On weakly s -permutably embedded subgroups

Changwen Li

Commentationes Mathematicae Universitatis Carolinae (2011)

  • Volume: 52, Issue: 1, page 21-29
  • ISSN: 0010-2628

Abstract

top
Suppose G is a finite group and H is a subgroup of G . H is said to be s -permutably embedded in G if for each prime p dividing | H | , a Sylow p -subgroup of H is also a Sylow p -subgroup of some s -permutable subgroup of G ; H is called weakly s -permutably embedded in G if there are a subnormal subgroup T of G and an s -permutably embedded subgroup H s e of G contained in H such that G = H T and H T H s e . We investigate the influence of weakly s -permutably embedded subgroups on the p -nilpotency and p -supersolvability of finite groups.

How to cite

top

Li, Changwen. "On weakly $s$-permutably embedded subgroups." Commentationes Mathematicae Universitatis Carolinae 52.1 (2011): 21-29. <http://eudml.org/doc/246816>.

@article{Li2011,
abstract = {Suppose $G$ is a finite group and $H$ is a subgroup of $G$. $H$ is said to be $s$-permutably embedded in $G$ if for each prime $p$ dividing $|H|$, a Sylow $p$-subgroup of $H$ is also a Sylow $p$-subgroup of some $s$-permutable subgroup of $G$; $H$ is called weakly $s$-permutably embedded in $G$ if there are a subnormal subgroup $T$ of $G$ and an $s$-permutably embedded subgroup $H_\{se\}$ of $G$ contained in $H$ such that $G=HT$ and $H\cap T\le H_\{se\}$. We investigate the influence of weakly $s$-permutably embedded subgroups on the $p$-nilpotency and $p$-supersolvability of finite groups.},
author = {Li, Changwen},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {weakly $s$-permutably embedded subgroups; $p$-nilpotent; $n$-maximal subgroup; finite groups; weakly -permutably embedded subgroups; -nilpotent groups; maximal subgroups; subnormal subgroups; nilpotency; supersolvability},
language = {eng},
number = {1},
pages = {21-29},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On weakly $s$-permutably embedded subgroups},
url = {http://eudml.org/doc/246816},
volume = {52},
year = {2011},
}

TY - JOUR
AU - Li, Changwen
TI - On weakly $s$-permutably embedded subgroups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 1
SP - 21
EP - 29
AB - Suppose $G$ is a finite group and $H$ is a subgroup of $G$. $H$ is said to be $s$-permutably embedded in $G$ if for each prime $p$ dividing $|H|$, a Sylow $p$-subgroup of $H$ is also a Sylow $p$-subgroup of some $s$-permutable subgroup of $G$; $H$ is called weakly $s$-permutably embedded in $G$ if there are a subnormal subgroup $T$ of $G$ and an $s$-permutably embedded subgroup $H_{se}$ of $G$ contained in $H$ such that $G=HT$ and $H\cap T\le H_{se}$. We investigate the influence of weakly $s$-permutably embedded subgroups on the $p$-nilpotency and $p$-supersolvability of finite groups.
LA - eng
KW - weakly $s$-permutably embedded subgroups; $p$-nilpotent; $n$-maximal subgroup; finite groups; weakly -permutably embedded subgroups; -nilpotent groups; maximal subgroups; subnormal subgroups; nilpotency; supersolvability
UR - http://eudml.org/doc/246816
ER -

References

top
  1. Kegel O.H., Sylow-Gruppen and Subnormalteiler endlicher Gruppen, Math. Z. 78 (1962), 205–221. MR0147527
  2. Ballester-Bolinches A., Pedraza-Aguilera M.C., 10.1016/S0022-4049(96)00172-7, J. Pure Appl. Algebra 127 (1998), 113–118. MR1620696DOI10.1016/S0022-4049(96)00172-7
  3. Wang Y., 10.1006/jabr.1996.0103, J. Algebra 180 (1996), 954–965. Zbl0847.20010MR1379219DOI10.1006/jabr.1996.0103
  4. Wang Y., Wei H., Li Y., 10.1017/S0004972700020517, Bull. Austral. Math. Soc. 65 (2002), 467–475. DOI10.1017/S0004972700020517
  5. Skiba A.N., 10.1016/j.jalgebra.2007.04.025, J. Algebra 315 (2007), 192–209. Zbl1130.20019MR2344341DOI10.1016/j.jalgebra.2007.04.025
  6. Robinson D.J.S., A Course in the Theory of Groups, Spinger, New York, 1982. Zbl0836.20001MR0648604
  7. Li Y., Qiao S., Wang Y., 10.1080/00927870802231197, Comm. Algebra 37 (2009), 1086–1097. Zbl1177.20036MR2503195DOI10.1080/00927870802231197
  8. Doerk K., Hawkes T., Finite Soluble Groups, Walter de Gruyter, Berlin-New York, 1992. Zbl0753.20001MR1169099
  9. Li Y., Wang Y., Wei H., 10.1007/s10474-005-0225-8, Acta. Math. Hungar. 108 (2005), 283–298. Zbl1094.20007MR2164692DOI10.1007/s10474-005-0225-8
  10. Asaad M., Heliel A.A., 10.1016/S0022-4049(00)00183-3, J. Pure Appl. Algebra 165 (2001), 129–135. Zbl1011.20019MR1865961DOI10.1016/S0022-4049(00)00183-3
  11. Huppert B., Endiche Gruppen I, Springer, Berlin, 1968. MR0224703
  12. Guo W., The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers, Beijing-Boston, 2000. Zbl1005.20016MR1862683
  13. Guo X., Shum K.P., 10.1007/s00013-003-0810-4, Arch. Math. 80 (2003), 561–569. Zbl1050.20010MR1997521DOI10.1007/s00013-003-0810-4
  14. Ramadan M., Mohamed M.E., Heliel A.A., 10.1007/s00013-005-1330-1, Arch. Math. 85 (2005), 203–210. Zbl1082.20008MR2172378DOI10.1007/s00013-005-1330-1
  15. Heliel A.A., Alharbia S.M., The infuence of certain permutable subgroups on the structure of finite groups, Int. J. Algebra 4 (2010), 1209–1218. MR2772496
  16. Wei H., Wang Y., On c * -normality and its properties, J. Group Theory 10 (2007), 211–223. Zbl1173.20014MR2302616
  17. Li S., Li Y., 10.1007/s10587-008-0070-3, Czechoslovak. Math. J. 58 (2008), 1083–1095. DOI10.1007/s10587-008-0070-3
  18. Schmidt P., 10.1006/jabr.1998.7429, J. Algebra 207 (1998), 285–293. MR1643106DOI10.1006/jabr.1998.7429
  19. Li Y., Qiao S., Wang Y., 10.1007/s11202-009-0052-1, Siberian Math. J. 50 (2009), 467–473. DOI10.1007/s11202-009-0052-1
  20. Miao L., 10.1007/s00574-010-0011-2, Bull. Braz. Math. Soc., New Series 41 (2010), 223–235. MR2738912DOI10.1007/s00574-010-0011-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.