On weakly -permutably embedded subgroups
Commentationes Mathematicae Universitatis Carolinae (2011)
- Volume: 52, Issue: 1, page 21-29
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLi, Changwen. "On weakly $s$-permutably embedded subgroups." Commentationes Mathematicae Universitatis Carolinae 52.1 (2011): 21-29. <http://eudml.org/doc/246816>.
@article{Li2011,
abstract = {Suppose $G$ is a finite group and $H$ is a subgroup of $G$. $H$ is said to be $s$-permutably embedded in $G$ if for each prime $p$ dividing $|H|$, a Sylow $p$-subgroup of $H$ is also a Sylow $p$-subgroup of some $s$-permutable subgroup of $G$; $H$ is called weakly $s$-permutably embedded in $G$ if there are a subnormal subgroup $T$ of $G$ and an $s$-permutably embedded subgroup $H_\{se\}$ of $G$ contained in $H$ such that $G=HT$ and $H\cap T\le H_\{se\}$. We investigate the influence of weakly $s$-permutably embedded subgroups on the $p$-nilpotency and $p$-supersolvability of finite groups.},
author = {Li, Changwen},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {weakly $s$-permutably embedded subgroups; $p$-nilpotent; $n$-maximal subgroup; finite groups; weakly -permutably embedded subgroups; -nilpotent groups; maximal subgroups; subnormal subgroups; nilpotency; supersolvability},
language = {eng},
number = {1},
pages = {21-29},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On weakly $s$-permutably embedded subgroups},
url = {http://eudml.org/doc/246816},
volume = {52},
year = {2011},
}
TY - JOUR
AU - Li, Changwen
TI - On weakly $s$-permutably embedded subgroups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 1
SP - 21
EP - 29
AB - Suppose $G$ is a finite group and $H$ is a subgroup of $G$. $H$ is said to be $s$-permutably embedded in $G$ if for each prime $p$ dividing $|H|$, a Sylow $p$-subgroup of $H$ is also a Sylow $p$-subgroup of some $s$-permutable subgroup of $G$; $H$ is called weakly $s$-permutably embedded in $G$ if there are a subnormal subgroup $T$ of $G$ and an $s$-permutably embedded subgroup $H_{se}$ of $G$ contained in $H$ such that $G=HT$ and $H\cap T\le H_{se}$. We investigate the influence of weakly $s$-permutably embedded subgroups on the $p$-nilpotency and $p$-supersolvability of finite groups.
LA - eng
KW - weakly $s$-permutably embedded subgroups; $p$-nilpotent; $n$-maximal subgroup; finite groups; weakly -permutably embedded subgroups; -nilpotent groups; maximal subgroups; subnormal subgroups; nilpotency; supersolvability
UR - http://eudml.org/doc/246816
ER -
References
top- Kegel O.H., Sylow-Gruppen and Subnormalteiler endlicher Gruppen, Math. Z. 78 (1962), 205–221. MR0147527
- Ballester-Bolinches A., Pedraza-Aguilera M.C., 10.1016/S0022-4049(96)00172-7, J. Pure Appl. Algebra 127 (1998), 113–118. MR1620696DOI10.1016/S0022-4049(96)00172-7
- Wang Y., 10.1006/jabr.1996.0103, J. Algebra 180 (1996), 954–965. Zbl0847.20010MR1379219DOI10.1006/jabr.1996.0103
- Wang Y., Wei H., Li Y., 10.1017/S0004972700020517, Bull. Austral. Math. Soc. 65 (2002), 467–475. DOI10.1017/S0004972700020517
- Skiba A.N., 10.1016/j.jalgebra.2007.04.025, J. Algebra 315 (2007), 192–209. Zbl1130.20019MR2344341DOI10.1016/j.jalgebra.2007.04.025
- Robinson D.J.S., A Course in the Theory of Groups, Spinger, New York, 1982. Zbl0836.20001MR0648604
- Li Y., Qiao S., Wang Y., 10.1080/00927870802231197, Comm. Algebra 37 (2009), 1086–1097. Zbl1177.20036MR2503195DOI10.1080/00927870802231197
- Doerk K., Hawkes T., Finite Soluble Groups, Walter de Gruyter, Berlin-New York, 1992. Zbl0753.20001MR1169099
- Li Y., Wang Y., Wei H., 10.1007/s10474-005-0225-8, Acta. Math. Hungar. 108 (2005), 283–298. Zbl1094.20007MR2164692DOI10.1007/s10474-005-0225-8
- Asaad M., Heliel A.A., 10.1016/S0022-4049(00)00183-3, J. Pure Appl. Algebra 165 (2001), 129–135. Zbl1011.20019MR1865961DOI10.1016/S0022-4049(00)00183-3
- Huppert B., Endiche Gruppen I, Springer, Berlin, 1968. MR0224703
- Guo W., The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers, Beijing-Boston, 2000. Zbl1005.20016MR1862683
- Guo X., Shum K.P., 10.1007/s00013-003-0810-4, Arch. Math. 80 (2003), 561–569. Zbl1050.20010MR1997521DOI10.1007/s00013-003-0810-4
- Ramadan M., Mohamed M.E., Heliel A.A., 10.1007/s00013-005-1330-1, Arch. Math. 85 (2005), 203–210. Zbl1082.20008MR2172378DOI10.1007/s00013-005-1330-1
- Heliel A.A., Alharbia S.M., The infuence of certain permutable subgroups on the structure of finite groups, Int. J. Algebra 4 (2010), 1209–1218. MR2772496
- Wei H., Wang Y., On -normality and its properties, J. Group Theory 10 (2007), 211–223. Zbl1173.20014MR2302616
- Li S., Li Y., 10.1007/s10587-008-0070-3, Czechoslovak. Math. J. 58 (2008), 1083–1095. DOI10.1007/s10587-008-0070-3
- Schmidt P., 10.1006/jabr.1998.7429, J. Algebra 207 (1998), 285–293. MR1643106DOI10.1006/jabr.1998.7429
- Li Y., Qiao S., Wang Y., 10.1007/s11202-009-0052-1, Siberian Math. J. 50 (2009), 467–473. DOI10.1007/s11202-009-0052-1
- Miao L., 10.1007/s00574-010-0011-2, Bull. Braz. Math. Soc., New Series 41 (2010), 223–235. MR2738912DOI10.1007/s00574-010-0011-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.