On S -quasinormal and c -normal subgroups of a finite group

Shirong Li; Yangming Li

Czechoslovak Mathematical Journal (2008)

  • Volume: 58, Issue: 4, page 1083-1095
  • ISSN: 0011-4642

Abstract

top
Let be a saturated formation containing the class of supersolvable groups and let G be a finite group. The following theorems are presented: (1) G if and only if there is a normal subgroup H such that G / H and every maximal subgroup of all Sylow subgroups of H is either c -normal or S -quasinormally embedded in G . (2) G if and only if there is a normal subgroup H such that G / H and every maximal subgroup of all Sylow subgroups of F * ( H ) , the generalized Fitting subgroup of H , is either c -normal or S -quasinormally embedded in G . (3) G if and only if there is a normal subgroup H such that G / H and every cyclic subgroup of F * ( H ) of prime order or order 4 is either c -normal or S -quasinormally embedded in G .

How to cite

top

Li, Shirong, and Li, Yangming. "On $S$-quasinormal and $c$-normal subgroups of a finite group." Czechoslovak Mathematical Journal 58.4 (2008): 1083-1095. <http://eudml.org/doc/37887>.

@article{Li2008,
abstract = {Let $\mathcal \{F\}$ be a saturated formation containing the class of supersolvable groups and let $G$ be a finite group. The following theorems are presented: (1) $G\in \mathcal \{F\}$ if and only if there is a normal subgroup $H$ such that $G/H\in \mathcal \{F\}$ and every maximal subgroup of all Sylow subgroups of $H$ is either $c$-normal or $S$-quasinormally embedded in $G$. (2) $G\in \mathcal \{F\}$ if and only if there is a normal subgroup $H$ such that $G/H\in \mathcal \{F\}$ and every maximal subgroup of all Sylow subgroups of $F^*(H)$, the generalized Fitting subgroup of $H$, is either $c$-normal or $S$-quasinormally embedded in $G$. (3) $G\in \mathcal \{F\}$ if and only if there is a normal subgroup $H$ such that $G/H\in \mathcal \{F\}$ and every cyclic subgroup of $F^*(H)$ of prime order or order 4 is either $c$-normal or $S$-quasinormally embedded in $G$.},
author = {Li, Shirong, Li, Yangming},
journal = {Czechoslovak Mathematical Journal},
keywords = {$S$-quasinormally embedded subgroup; $c$-normal subgroup; $p$-nilpotent group; the generalized Fitting subgroup; saturated formation; -nilpotent groups; generalized Fitting subgroup; saturated formations; maximal subgroups; Sylow subgroups; c-normal subgroups; -quasinormally embedded subgroups},
language = {eng},
number = {4},
pages = {1083-1095},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On $S$-quasinormal and $c$-normal subgroups of a finite group},
url = {http://eudml.org/doc/37887},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Li, Shirong
AU - Li, Yangming
TI - On $S$-quasinormal and $c$-normal subgroups of a finite group
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 1083
EP - 1095
AB - Let $\mathcal {F}$ be a saturated formation containing the class of supersolvable groups and let $G$ be a finite group. The following theorems are presented: (1) $G\in \mathcal {F}$ if and only if there is a normal subgroup $H$ such that $G/H\in \mathcal {F}$ and every maximal subgroup of all Sylow subgroups of $H$ is either $c$-normal or $S$-quasinormally embedded in $G$. (2) $G\in \mathcal {F}$ if and only if there is a normal subgroup $H$ such that $G/H\in \mathcal {F}$ and every maximal subgroup of all Sylow subgroups of $F^*(H)$, the generalized Fitting subgroup of $H$, is either $c$-normal or $S$-quasinormally embedded in $G$. (3) $G\in \mathcal {F}$ if and only if there is a normal subgroup $H$ such that $G/H\in \mathcal {F}$ and every cyclic subgroup of $F^*(H)$ of prime order or order 4 is either $c$-normal or $S$-quasinormally embedded in $G$.
LA - eng
KW - $S$-quasinormally embedded subgroup; $c$-normal subgroup; $p$-nilpotent group; the generalized Fitting subgroup; saturated formation; -nilpotent groups; generalized Fitting subgroup; saturated formations; maximal subgroups; Sylow subgroups; c-normal subgroups; -quasinormally embedded subgroups
UR - http://eudml.org/doc/37887
ER -

References

top
  1. Asaad, M., Heliel, A. A., 10.1016/S0022-4049(00)00183-3, J. Pure App. Algebra 165 (2001), 129-135. (2001) MR1865961DOI10.1016/S0022-4049(00)00183-3
  2. Ballester-Bolinches, A., Pedraza-Aguilera, M. C., 10.1016/S0022-4049(96)00172-7, J. Pure App. Algebra 127 (1998), 113-118. (1998) MR1620696DOI10.1016/S0022-4049(96)00172-7
  3. Deskins, W. E., 10.1007/BF01111801, Math. Z. 82 (1963), 125-132. (1963) Zbl0114.02004MR0153738DOI10.1007/BF01111801
  4. Kegel, O. H., 10.1007/BF01195169, Math. Z. 78 (1962), 205-221. (1962) Zbl0102.26802MR0147527DOI10.1007/BF01195169
  5. Guo, X. Y., Shum, K. P., 10.1007/s00013-003-0810-4, Arch. Math. 80 (2003), 561-569. (2003) Zbl1050.20010MR1997521DOI10.1007/s00013-003-0810-4
  6. Huppert, B., Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York (1967). (1967) Zbl0217.07201MR0224703
  7. Huppert, B., Blackburn, N., Finite Groups III, Springer-Verlag, Berlin, New York (1982). (1982) Zbl0514.20002MR0662826
  8. Li, D., Guo, X., 10.1080/00927879808826248, Comm. Algebra 26 (1998), 1913-1922. (1998) MR1621704DOI10.1080/00927879808826248
  9. Li, D., Guo, X., 10.1016/S0022-4049(99)00042-0, J. Pure App. Algebra 150 (2000), 53-60. (2000) MR1762920DOI10.1016/S0022-4049(99)00042-0
  10. Li, Shirong, He, Xuanli, 10.1080/00927870701509370, Comm. Algebra 36 (2008), 2333-2340. (2008) Zbl1146.20015MR2418390DOI10.1080/00927870701509370
  11. Li, Yangming, Wang, Yanming, 10.1016/j.jalgebra.2004.06.026, J. Algebra 281 (2004), 109-123. (2004) Zbl1079.20026MR2091963DOI10.1016/j.jalgebra.2004.06.026
  12. Schmid, P., 10.1006/jabr.1998.7429, J. Algebra 207 (1998), 285-293. (1998) Zbl0910.20015MR1643106DOI10.1006/jabr.1998.7429
  13. Srinivasan, S., 10.1007/BF02761191, Israel J. Math. 35 (1980), 210-214. (1980) Zbl0437.20012MR0576471DOI10.1007/BF02761191
  14. Tate, J., 10.1016/0040-9383(64)90008-4, Topology 3 (1964), 109-111. (1964) Zbl0125.01503MR0160822DOI10.1016/0040-9383(64)90008-4
  15. Wang, Yanming, 10.1006/jabr.1996.0103, J. Algebra 180 (1996), 954-965. (1996) Zbl0847.20010MR1379219DOI10.1006/jabr.1996.0103
  16. Wei, H., 10.1081/AGB-100002178, Comm. Algebra 29 (2001), 2193-2200. (2001) Zbl0990.20012MR1837971DOI10.1081/AGB-100002178
  17. Wei, H., Wang, Y., Li, Y., 10.1081/AGB-120023133, Comm. Algebra 31 (2003), 4807-4816. (2003) Zbl1050.20011MR1998029DOI10.1081/AGB-120023133

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.