On -quasinormal and -normal subgroups of a finite group
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 4, page 1083-1095
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLi, Shirong, and Li, Yangming. "On $S$-quasinormal and $c$-normal subgroups of a finite group." Czechoslovak Mathematical Journal 58.4 (2008): 1083-1095. <http://eudml.org/doc/37887>.
@article{Li2008,
abstract = {Let $\mathcal \{F\}$ be a saturated formation containing the class of supersolvable groups and let $G$ be a finite group. The following theorems are presented: (1) $G\in \mathcal \{F\}$ if and only if there is a normal subgroup $H$ such that $G/H\in \mathcal \{F\}$ and every maximal subgroup of all Sylow subgroups of $H$ is either $c$-normal or $S$-quasinormally embedded in $G$. (2) $G\in \mathcal \{F\}$ if and only if there is a normal subgroup $H$ such that $G/H\in \mathcal \{F\}$ and every maximal subgroup of all Sylow subgroups of $F^*(H)$, the generalized Fitting subgroup of $H$, is either $c$-normal or $S$-quasinormally embedded in $G$. (3) $G\in \mathcal \{F\}$ if and only if there is a normal subgroup $H$ such that $G/H\in \mathcal \{F\}$ and every cyclic subgroup of $F^*(H)$ of prime order or order 4 is either $c$-normal or $S$-quasinormally embedded in $G$.},
author = {Li, Shirong, Li, Yangming},
journal = {Czechoslovak Mathematical Journal},
keywords = {$S$-quasinormally embedded subgroup; $c$-normal subgroup; $p$-nilpotent group; the generalized Fitting subgroup; saturated formation; -nilpotent groups; generalized Fitting subgroup; saturated formations; maximal subgroups; Sylow subgroups; c-normal subgroups; -quasinormally embedded subgroups},
language = {eng},
number = {4},
pages = {1083-1095},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On $S$-quasinormal and $c$-normal subgroups of a finite group},
url = {http://eudml.org/doc/37887},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Li, Shirong
AU - Li, Yangming
TI - On $S$-quasinormal and $c$-normal subgroups of a finite group
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 1083
EP - 1095
AB - Let $\mathcal {F}$ be a saturated formation containing the class of supersolvable groups and let $G$ be a finite group. The following theorems are presented: (1) $G\in \mathcal {F}$ if and only if there is a normal subgroup $H$ such that $G/H\in \mathcal {F}$ and every maximal subgroup of all Sylow subgroups of $H$ is either $c$-normal or $S$-quasinormally embedded in $G$. (2) $G\in \mathcal {F}$ if and only if there is a normal subgroup $H$ such that $G/H\in \mathcal {F}$ and every maximal subgroup of all Sylow subgroups of $F^*(H)$, the generalized Fitting subgroup of $H$, is either $c$-normal or $S$-quasinormally embedded in $G$. (3) $G\in \mathcal {F}$ if and only if there is a normal subgroup $H$ such that $G/H\in \mathcal {F}$ and every cyclic subgroup of $F^*(H)$ of prime order or order 4 is either $c$-normal or $S$-quasinormally embedded in $G$.
LA - eng
KW - $S$-quasinormally embedded subgroup; $c$-normal subgroup; $p$-nilpotent group; the generalized Fitting subgroup; saturated formation; -nilpotent groups; generalized Fitting subgroup; saturated formations; maximal subgroups; Sylow subgroups; c-normal subgroups; -quasinormally embedded subgroups
UR - http://eudml.org/doc/37887
ER -
References
top- Asaad, M., Heliel, A. A., 10.1016/S0022-4049(00)00183-3, J. Pure App. Algebra 165 (2001), 129-135. (2001) MR1865961DOI10.1016/S0022-4049(00)00183-3
- Ballester-Bolinches, A., Pedraza-Aguilera, M. C., 10.1016/S0022-4049(96)00172-7, J. Pure App. Algebra 127 (1998), 113-118. (1998) MR1620696DOI10.1016/S0022-4049(96)00172-7
- Deskins, W. E., 10.1007/BF01111801, Math. Z. 82 (1963), 125-132. (1963) Zbl0114.02004MR0153738DOI10.1007/BF01111801
- Kegel, O. H., 10.1007/BF01195169, Math. Z. 78 (1962), 205-221. (1962) Zbl0102.26802MR0147527DOI10.1007/BF01195169
- Guo, X. Y., Shum, K. P., 10.1007/s00013-003-0810-4, Arch. Math. 80 (2003), 561-569. (2003) Zbl1050.20010MR1997521DOI10.1007/s00013-003-0810-4
- Huppert, B., Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York (1967). (1967) Zbl0217.07201MR0224703
- Huppert, B., Blackburn, N., Finite Groups III, Springer-Verlag, Berlin, New York (1982). (1982) Zbl0514.20002MR0662826
- Li, D., Guo, X., 10.1080/00927879808826248, Comm. Algebra 26 (1998), 1913-1922. (1998) MR1621704DOI10.1080/00927879808826248
- Li, D., Guo, X., 10.1016/S0022-4049(99)00042-0, J. Pure App. Algebra 150 (2000), 53-60. (2000) MR1762920DOI10.1016/S0022-4049(99)00042-0
- Li, Shirong, He, Xuanli, 10.1080/00927870701509370, Comm. Algebra 36 (2008), 2333-2340. (2008) Zbl1146.20015MR2418390DOI10.1080/00927870701509370
- Li, Yangming, Wang, Yanming, 10.1016/j.jalgebra.2004.06.026, J. Algebra 281 (2004), 109-123. (2004) Zbl1079.20026MR2091963DOI10.1016/j.jalgebra.2004.06.026
- Schmid, P., 10.1006/jabr.1998.7429, J. Algebra 207 (1998), 285-293. (1998) Zbl0910.20015MR1643106DOI10.1006/jabr.1998.7429
- Srinivasan, S., 10.1007/BF02761191, Israel J. Math. 35 (1980), 210-214. (1980) Zbl0437.20012MR0576471DOI10.1007/BF02761191
- Tate, J., 10.1016/0040-9383(64)90008-4, Topology 3 (1964), 109-111. (1964) Zbl0125.01503MR0160822DOI10.1016/0040-9383(64)90008-4
- Wang, Yanming, 10.1006/jabr.1996.0103, J. Algebra 180 (1996), 954-965. (1996) Zbl0847.20010MR1379219DOI10.1006/jabr.1996.0103
- Wei, H., 10.1081/AGB-100002178, Comm. Algebra 29 (2001), 2193-2200. (2001) Zbl0990.20012MR1837971DOI10.1081/AGB-100002178
- Wei, H., Wang, Y., Li, Y., 10.1081/AGB-120023133, Comm. Algebra 31 (2003), 4807-4816. (2003) Zbl1050.20011MR1998029DOI10.1081/AGB-120023133
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.