–weighted holomorphic Besov spaces on the unit ball in
A. V. Harutyunyan; Wolfgang Lusky
Commentationes Mathematicae Universitatis Carolinae (2011)
- Volume: 52, Issue: 1, page 37-56
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHarutyunyan, A. V., and Lusky, Wolfgang. "$\omega $–weighted holomorphic Besov spaces on the unit ball in $C^n$." Commentationes Mathematicae Universitatis Carolinae 52.1 (2011): 37-56. <http://eudml.org/doc/246848>.
@article{Harutyunyan2011,
abstract = {The $\omega $-weighted Besov spaces of holomorphic functions on the unit ball $B^n$ in $C^n$ are introduced as follows. Given a function $\omega $ of regular variation and $0< p< \infty $, a function $f$ holomorphic in $B^n$ is said to belong to the Besov space $B_p(\omega )$ if \[ \Vert f\Vert ^p\_\{B\_p(\omega )\}=\int \_\{B^n\} (1-|z|^2)^p|Df(z)|^p \frac\{\omega (1-|z|)\}\{(1-|z|^2)^\{n+1\}\}\,d\nu (z)< +\infty , \]
where $d\nu (z)$ is the volume measure on $B^n$ and $D$ stands for the fractional derivative of $f$. The holomorphic Besov space is described in the terms of the corresponding $L_p(\omega )$ space. Some projection theorems and theorems on existence of the inversions of these projections are proved. Also, explicit descriptions of the duals of the considered Besov spaces are given.},
author = {Harutyunyan, A. V., Lusky, Wolfgang},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {weighted Besov spaces; unit ball; projection; weighted Besov space; unit ball; projection; holomorphic function},
language = {eng},
number = {1},
pages = {37-56},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$\omega $–weighted holomorphic Besov spaces on the unit ball in $C^n$},
url = {http://eudml.org/doc/246848},
volume = {52},
year = {2011},
}
TY - JOUR
AU - Harutyunyan, A. V.
AU - Lusky, Wolfgang
TI - $\omega $–weighted holomorphic Besov spaces on the unit ball in $C^n$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 1
SP - 37
EP - 56
AB - The $\omega $-weighted Besov spaces of holomorphic functions on the unit ball $B^n$ in $C^n$ are introduced as follows. Given a function $\omega $ of regular variation and $0< p< \infty $, a function $f$ holomorphic in $B^n$ is said to belong to the Besov space $B_p(\omega )$ if \[ \Vert f\Vert ^p_{B_p(\omega )}=\int _{B^n} (1-|z|^2)^p|Df(z)|^p \frac{\omega (1-|z|)}{(1-|z|^2)^{n+1}}\,d\nu (z)< +\infty , \]
where $d\nu (z)$ is the volume measure on $B^n$ and $D$ stands for the fractional derivative of $f$. The holomorphic Besov space is described in the terms of the corresponding $L_p(\omega )$ space. Some projection theorems and theorems on existence of the inversions of these projections are proved. Also, explicit descriptions of the duals of the considered Besov spaces are given.
LA - eng
KW - weighted Besov spaces; unit ball; projection; weighted Besov space; unit ball; projection; holomorphic function
UR - http://eudml.org/doc/246848
ER -
References
top- Arazy J., Fisher S., Peetre J., Mobius invariant function spaces, J. Reine Angew. Math. 363 (1985), 110–145. MR0814017
- Blasco O., 10.1090/conm/144/1209444, Contemp. Math. 144 (1993), 23–33. Zbl0838.42002MR1209444DOI10.1090/conm/144/1209444
- Djrbashian A., Shamoyan F., Topics in the Theory of spaces, Teubner Texts in Math., 105, Teubner, Leipzig, 1988. Zbl0667.30032MR1021691
- Harutyunyan A., Lusky W., Holomorphic Bloch space on the unit ball in , Comment. Math. Univ. Carolin. 50 (2009), no. 4, 549–562. MR2583132
- Harutyunyan A., Lusky W., weighted holomorphic Besov spaces on polydiscs, J. Funct. Spaces Appl.(to appear). MR2796723
- Harutyunyan A., Lusky W., 10.3103/S1068362310030027, J. Contemp. Math. Anal. 45 (2010), no. 3, 128–135. MR2760596DOI10.3103/S1068362310030027
- Harutyunyan A.V., 10.1155/2007/353959, J. Funct. Spaces Appl. 5 (2007), no. 3, 213–230. MR2352842DOI10.1155/2007/353959
- Karapetyants A.N., Kodzoeva F.D., Analytic weigthed Besov spaces on the unit disc, Proc. A. Razmadze Math.Inst. 139 (2005), 125–127. MR2202885
- Nowak M., 10.1080/17476930108815339, Complex Variables Theory Appl. 44 (2001), 1–12. MR1826712DOI10.1080/17476930108815339
- Li S., Stevic S., 10.1016/j.jmaa.2008.05.044, J. Math. Anal. Appl. 346 (2008), 262–273. Zbl1156.32002MR2428290DOI10.1016/j.jmaa.2008.05.044
- Li S., Wulan H., Besov space on the unit ball of , Indian J. Math. 48 (2006), no. 2, 177–186. MR2251898
- Rudin W., Function Theory in Unit Ball of , Springer, New York-Berlin, 1980. MR0601594
- Seneta E., Functions of Regular Variation, (Russian), Nauka, Moscow, 1985.
- Stroethoff K., 10.1017/S0004972700003324, Bull. Australian Math. Soc. 39 (1989), 405–420. MR0995138DOI10.1017/S0004972700003324
- Zhu K., Spaces of Holomorphic Functions in the Unit Ball, Graduatre Texts in Mathematics, 226, Springer, New York, 2005. Zbl1067.32005MR2115155
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.