Holomorphic Bloch spaces on the unit ball in
A. V. Harutyunyan; Wolfgang Lusky
Commentationes Mathematicae Universitatis Carolinae (2009)
- Volume: 50, Issue: 4, page 549-562
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHarutyunyan, A. V., and Lusky, Wolfgang. "Holomorphic Bloch spaces on the unit ball in $C^n$." Commentationes Mathematicae Universitatis Carolinae 50.4 (2009): 549-562. <http://eudml.org/doc/35129>.
@article{Harutyunyan2009,
abstract = {This work is an introduction to anisotropic spaces of holomorphic functions, which have $\omega $-weight and are generalizations of Bloch spaces on a unit ball. We describe the holomorphic Bloch space in terms of the corresponding $L_\omega ^\infty $ space. We establish a description of $(A^p(\omega ))^*$ via the Bloch classes for all $0<p\le 1$.},
author = {Harutyunyan, A. V., Lusky, Wolfgang},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {weighted Bloch spaces; projection; inverse mapping; dual space; weighted Bloch spaces; projection; inverse mapping; dual space},
language = {eng},
number = {4},
pages = {549-562},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Holomorphic Bloch spaces on the unit ball in $C^n$},
url = {http://eudml.org/doc/35129},
volume = {50},
year = {2009},
}
TY - JOUR
AU - Harutyunyan, A. V.
AU - Lusky, Wolfgang
TI - Holomorphic Bloch spaces on the unit ball in $C^n$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 4
SP - 549
EP - 562
AB - This work is an introduction to anisotropic spaces of holomorphic functions, which have $\omega $-weight and are generalizations of Bloch spaces on a unit ball. We describe the holomorphic Bloch space in terms of the corresponding $L_\omega ^\infty $ space. We establish a description of $(A^p(\omega ))^*$ via the Bloch classes for all $0<p\le 1$.
LA - eng
KW - weighted Bloch spaces; projection; inverse mapping; dual space; weighted Bloch spaces; projection; inverse mapping; dual space
UR - http://eudml.org/doc/35129
ER -
References
top- Attele R., 10.1155/S016117129000028X, Internat. J. Math. Math. Sci. 13 (1990), no. 1, 193--198. Zbl0701.30045MR1038664DOI10.1155/S016117129000028X
- Anderson J.M., Bloch function: The basic theory, Operators and Function Theory (Lancaster, 1984), Reidel, Dordrecht, 1985, pp. 1--17. MR0810441
- Arazy J., Multipliers of Bloch functions, University of Haifa, Mathematics Publication Series 54, 1982.
- Bishop C.J., 10.2140/pjm.1990.142.209, Pacific J. Math. 142 (1990), no. 2, 209--225. Zbl0652.30024MR1042042DOI10.2140/pjm.1990.142.209
- Djrbashian A.E., Shamoian F.A., Topics in the theory of spaces, Teubner Texts in Math., 105, Teubner, Leipzig, 1988. Zbl0667.30032MR1021691
- Djrbashian M.M., On the representation problem of analytic functions, Soobsh. Inst. Matem. Mekh. Akad. Nauk Armyan. SSR 2 (1948), 3--40.
- Harutyunyan A.V., 10.1155/2007/353959, J. Funct. Spaces Appl. 5 (2007), no. 3, 213--230. MR2352842DOI10.1155/2007/353959
- Nowak M., Bloch space on the unit ball of , Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 2, 461--473. MR1642142
- Rudin W., Function Theory in the Unit Ball of , Springer, New York, Heidelberg, Berlin, 1980. MR0601594
- Seneta E., Functions of Regular Variation, (in Russian), Nauka, Moscow, 1985.
- Yang W., Some characterizations of -Bloch spaces on the unit ball of , Acta Math. Sci. (English Ed.) 17 (1997), no. 4, 471--477. MR1613263
- Zhu K., Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics, 226, Springer, New York, 2005. Zbl1067.32005MR2115155
- Zhou Z., The essential norms of composition operators between generalized Bloch spaces in the polydisc and their applications, 2005, arXiv: math.Fa/0503723v3. Zbl1131.47021
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.