On Boman's theorem on partial regularity of mappings
Commentationes Mathematicae Universitatis Carolinae (2011)
- Volume: 52, Issue: 3, page 349-357
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topNeelon, Tejinder S.. "On Boman's theorem on partial regularity of mappings." Commentationes Mathematicae Universitatis Carolinae 52.3 (2011): 349-357. <http://eudml.org/doc/246863>.
@article{Neelon2011,
abstract = {Let $\Lambda \subset \mathbb \{R\}^\{n\}\times \mathbb \{R\}^\{m\}$ and $k$ be a positive integer. Let $f:\mathbb \{R\}^\{n\}\rightarrow \mathbb \{R\}^\{m\}$ be a locally bounded map such that for each $(\xi ,\eta )\in \Lambda $, the derivatives $D_\{\xi \}^\{j\}f(x):= \frac\{d^\{j\}\}\{dt^\{j\}\}f(x+t\xi ) \Big \vert _\{t=0\}$, $j=1,2,\dots k$, exist and are continuous. In order to conclude that any such map $f$ is necessarily of class $C^\{k\}$ it is necessary and sufficient that $\Lambda $ be not contained in the zero-set of a nonzero homogenous polynomial $\Phi (\xi ,\eta )$ which is linear in $\eta =(\eta _\{1\},\eta _\{2\},\dots ,\eta _\{m\})$ and homogeneous of degree $k$ in $\xi =(\xi _\{1\},\xi _\{2\},\dots ,\xi _\{n\})$. This generalizes a result of J. Boman for the case $k=1$. The statement and the proof of a theorem of Boman for the case $k=\infty $ is also extended to include the Carleman classes $C\lbrace M_\{k\}\rbrace $ and the Beurling classes $C(M_\{k\})$ (Boman J., Partial regularity of mappings between Euclidean spaces, Acta Math. 119 (1967), 1–25).},
author = {Neelon, Tejinder S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$C^\{k\}$ maps; partial regularity; Carleman classes; Beurling classes; -mapping; Carleman class; Beurling class},
language = {eng},
number = {3},
pages = {349-357},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On Boman's theorem on partial regularity of mappings},
url = {http://eudml.org/doc/246863},
volume = {52},
year = {2011},
}
TY - JOUR
AU - Neelon, Tejinder S.
TI - On Boman's theorem on partial regularity of mappings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 3
SP - 349
EP - 357
AB - Let $\Lambda \subset \mathbb {R}^{n}\times \mathbb {R}^{m}$ and $k$ be a positive integer. Let $f:\mathbb {R}^{n}\rightarrow \mathbb {R}^{m}$ be a locally bounded map such that for each $(\xi ,\eta )\in \Lambda $, the derivatives $D_{\xi }^{j}f(x):= \frac{d^{j}}{dt^{j}}f(x+t\xi ) \Big \vert _{t=0}$, $j=1,2,\dots k$, exist and are continuous. In order to conclude that any such map $f$ is necessarily of class $C^{k}$ it is necessary and sufficient that $\Lambda $ be not contained in the zero-set of a nonzero homogenous polynomial $\Phi (\xi ,\eta )$ which is linear in $\eta =(\eta _{1},\eta _{2},\dots ,\eta _{m})$ and homogeneous of degree $k$ in $\xi =(\xi _{1},\xi _{2},\dots ,\xi _{n})$. This generalizes a result of J. Boman for the case $k=1$. The statement and the proof of a theorem of Boman for the case $k=\infty $ is also extended to include the Carleman classes $C\lbrace M_{k}\rbrace $ and the Beurling classes $C(M_{k})$ (Boman J., Partial regularity of mappings between Euclidean spaces, Acta Math. 119 (1967), 1–25).
LA - eng
KW - $C^{k}$ maps; partial regularity; Carleman classes; Beurling classes; -mapping; Carleman class; Beurling class
UR - http://eudml.org/doc/246863
ER -
References
top- Agbor D., Boman J., On modulus of continuity of mappings between Euclidean spaces, Math. Scandinavica(to appear).
- Bierstone E., Milman P.D., Parusinski A., 10.1090/S0002-9939-1991-1072083-4, Proc. Amer. Math. Soc. 113 (1991), 419–423. Zbl0739.32009MR1072083DOI10.1090/S0002-9939-1991-1072083-4
- Bochnak J., Analytic functions in Banach spaces, Studia Math. 35 (1970), 273–292. Zbl0199.18402MR0273396
- Boman J., 10.1007/BF02392077, Acta Math. 119 (1967), 1–25. Zbl0186.10001MR0220883DOI10.1007/BF02392077
- Hörmander L., The Analysis of Linear Partial Differential Operators I, Springer, Berlin, 2003. MR1996773
- Korevaar J., Applications of capacities, Several complex variables and complex geometry, Part 1 (Santa Cruz, CA, 1989), Amer. Math. Soc., Providence, RI, 1991, pp. 105–118. MR1128518
- Krantz S.G., Parks H.R., A Primer of Real Analytic Functions, second edition, Birkhäuser, Boston, MS, 2002. Zbl1015.26030MR1916029
- Neelon T.S., On separate ultradifferentiability of functions, Acta Sci. Math. (Szeged) 64 (1998), 489–494. Zbl0927.46023MR1666030
- Neelon T.S., 10.1090/S0002-9939-99-04759-0, Proc. Amer. Math. Soc. 127 (1999), 2099–2104. MR1487332DOI10.1090/S0002-9939-99-04759-0
- Neelon T.S., 10.4153/CMB-2006-026-9, Canad. Math. Bull. 49 (2006), 256–264. MR2226248DOI10.4153/CMB-2006-026-9
- Neelon T.S., 10.1524/anly.2009.0929, Analysis (Munich) 29 (2009), no. 1, page 1–15. Zbl1179.26088MR2524101DOI10.1524/anly.2009.0929
- Rudin W., Principles of Mathematical Analysis, 3rd edition, McGraw-Hill, New York, 1976. Zbl0346.26002MR0385023
- Siciak J., A characterization of analytic functions of real variables, Studia Mathematica 35 (1970), 293–297. Zbl0197.05801MR0279263
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.