Conformal vector fields on Finsler manifolds

József Szilasi; Anna Tóth

Communications in Mathematics (2011)

  • Volume: 19, Issue: 2, page 149-168
  • ISSN: 1804-1388

Abstract

top
Applying concepts and tools from classical tangent bundle geometry and using the apparatus of the calculus along the tangent bundle projection (‘pull-back formalism’), first we enrich the known lists of the characterizations of affine vector fields on a spray manifold and conformal vector fields on a Finsler manifold. Second, we deduce consequences on vector fields on the underlying manifold of a Finsler structure having one or two of the mentioned geometric properties.

How to cite

top

Szilasi, József, and Tóth, Anna. "Conformal vector fields on Finsler manifolds." Communications in Mathematics 19.2 (2011): 149-168. <http://eudml.org/doc/246872>.

@article{Szilasi2011,
abstract = {Applying concepts and tools from classical tangent bundle geometry and using the apparatus of the calculus along the tangent bundle projection (‘pull-back formalism’), first we enrich the known lists of the characterizations of affine vector fields on a spray manifold and conformal vector fields on a Finsler manifold. Second, we deduce consequences on vector fields on the underlying manifold of a Finsler structure having one or two of the mentioned geometric properties.},
author = {Szilasi, József, Tóth, Anna},
journal = {Communications in Mathematics},
keywords = {spray manifold; Finsler manifold; projective vector field; affine vector field; conformal vector field; conformal vector field; Finsler manifold},
language = {eng},
number = {2},
pages = {149-168},
publisher = {University of Ostrava},
title = {Conformal vector fields on Finsler manifolds},
url = {http://eudml.org/doc/246872},
volume = {19},
year = {2011},
}

TY - JOUR
AU - Szilasi, József
AU - Tóth, Anna
TI - Conformal vector fields on Finsler manifolds
JO - Communications in Mathematics
PY - 2011
PB - University of Ostrava
VL - 19
IS - 2
SP - 149
EP - 168
AB - Applying concepts and tools from classical tangent bundle geometry and using the apparatus of the calculus along the tangent bundle projection (‘pull-back formalism’), first we enrich the known lists of the characterizations of affine vector fields on a spray manifold and conformal vector fields on a Finsler manifold. Second, we deduce consequences on vector fields on the underlying manifold of a Finsler structure having one or two of the mentioned geometric properties.
LA - eng
KW - spray manifold; Finsler manifold; projective vector field; affine vector field; conformal vector field; conformal vector field; Finsler manifold
UR - http://eudml.org/doc/246872
ER -

References

top
  1. Abraham, R., Marsden, J.E., Ratiu, T., Manifolds, Tensor Analysis, and Applications, 2nd edition, Springer-Verlag, New York and Berlin 1988 (1988) Zbl0875.58002MR0960687
  2. Akbar-Zadeh, H., Transformations infinitésimales conformes des variétés finsleriennes compactes, Annales Polonici Mathematici XXXVI 1979 213-229 (1979) Zbl0413.53036MR0537616
  3. Akbar-Zadeh, H., Champs de vecteurs projectifs sur le fibré unitaire, J. Math. pures et appl. 65 1986 47-79 (1986) MR0844240
  4. Bácsó, S., Szilasi, Z., On the projective theory of sprays, Acta Math. Acad. Paed. Nyregyháziensis 26 2010 171-207 (2010) Zbl1240.53047MR2754415
  5. Crampin, M., 10.1112/jlms/s2-3.1.178, J. London Math. Soc (2) 3 1971 178-182 (1971) Zbl0215.51003MR0293528DOI10.1112/jlms/s2-3.1.178
  6. León, M. de, Rodrigues, P.R., Methods of Differential Geometry in Analytical Mechanics, North-Holland, Amsterdam 1989 (1989) Zbl0687.53001MR1021489
  7. Greub, W., Halperin, S., Vanstone, R., Connections, Curvature, and Cohomology, Vol. I, Academic Press, New York and London 1972 (1972) Zbl0322.58001
  8. Grifone, J., 10.5802/aif.407, Ann. Inst. Fourier (Grenoble) 22 1972 287-334 (1972) Zbl0219.53032MR0336636DOI10.5802/aif.407
  9. Grifone, J., Transformations infinitésimales conformes d’une variété finslerienne, C.R. Acad. Sc. Paris 280, Série A 1975 519-522 (1975) Zbl0311.53071MR0388300
  10. Grifone, J., Sur les transformations infinitésimales conformes d’une variété finslérienne, C.R. Acad. Sc. Paris 280, Série A 1975 583-585 (1975) Zbl0311.53071MR0370450
  11. Lang, S., Fundamentals of Differential Geometry, Springer-Verlag, New York 1999 (1999) Zbl0932.53001MR1666820
  12. Lovas, R.L., 10.1023/B:MAHU.0000038973.18653.2e, Periodica Mathematica Hungarica 48 2004 165-179 (2004) Zbl1067.53059MR2077694DOI10.1023/B:MAHU.0000038973.18653.2e
  13. Matsumoto, M., Theory of extended point transformations of Finsler spaces I, Tensor N.S. 45 1987 109-115 (1987) Zbl0637.53031
  14. Matsumoto, M., Theory of extended point transformations of Finsler spaces II, Tensor N.S. 47 1988 203-214 (1988) Zbl0701.53046MR1037236
  15. Misra, R.B., Groups of transformations in Finslerian spaces, Internal Reports of the ICTP, Trieste 1993 (1993) 
  16. Szilasi, J., A Setting for Spray and Finsler Geometry, Handbook of Finsler Geometry , Kluwer Academic Publishers, Dordrecht 2003 1183-1426 (2003) Zbl1105.53043MR2066454
  17. Szilasi, J., Vincze, Cs., On conformal equivalence of Riemann-Finsler metrics, Publ. Math. Debrecen 52 1998 167-185 (1998) Zbl0907.53044MR1603351
  18. Yano, K., The Theory of Lie Derivatives and its Applications, North-Holland, Amsterdam 1957 (1957) Zbl0077.15802MR0088769
  19. Yano, K., Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker Inc., New York 1973 (1973) Zbl0262.53024MR0350650

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.