-nilpotent units of commutative group rings
Commentationes Mathematicae Universitatis Carolinae (2012)
- Volume: 53, Issue: 2, page 179-187
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDanchev, Peter Vassilev. "$G$-nilpotent units of commutative group rings." Commentationes Mathematicae Universitatis Carolinae 53.2 (2012): 179-187. <http://eudml.org/doc/246916>.
@article{Danchev2012,
abstract = {Suppose $R$ is a commutative unital ring and $G$ is an abelian group. We give a general criterion only in terms of $R$ and $G$ when all normalized units in the commutative group ring $RG$ are $G$-nilpotent. This extends recent results published in [Extracta Math., 2008–2009] and [Ann. Sci. Math. Québec, 2009].},
author = {Danchev, Peter Vassilev},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {group rings; normalized units; nilpotents; idempotents; decompositions; abelian groups; commutative group rings; normalized units; nilpotent units; idempotents; decompositions; Abelian groups},
language = {eng},
number = {2},
pages = {179-187},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$G$-nilpotent units of commutative group rings},
url = {http://eudml.org/doc/246916},
volume = {53},
year = {2012},
}
TY - JOUR
AU - Danchev, Peter Vassilev
TI - $G$-nilpotent units of commutative group rings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 2
SP - 179
EP - 187
AB - Suppose $R$ is a commutative unital ring and $G$ is an abelian group. We give a general criterion only in terms of $R$ and $G$ when all normalized units in the commutative group ring $RG$ are $G$-nilpotent. This extends recent results published in [Extracta Math., 2008–2009] and [Ann. Sci. Math. Québec, 2009].
LA - eng
KW - group rings; normalized units; nilpotents; idempotents; decompositions; abelian groups; commutative group rings; normalized units; nilpotent units; idempotents; decompositions; Abelian groups
UR - http://eudml.org/doc/246916
ER -
References
top- Bourbaki N., Commutative Algebra, Chapters 1–7, Elements of Mathematics (Berlin), Springer, Berlin, 1989. Zbl0902.13001MR0979760
- Danchev P., On a decomposition of normalized units in abelian group algebras, An. Univ. Bucuresti Mat. 57 (2008), no. 2, 133–138. Zbl1165.16017MR2553986
- Danchev P., Trivial units in commutative group algebras, Extracta Math. 23 (2008), no. 1, 49–60. Zbl1163.16019MR2449995
- Danchev P., Trivial units in abelian group algebras, Extracta Math. 24 (2009), no. 1, 47–53. Zbl1184.16040MR2596826
- Danchev P., -unipotent units in commutative group rings, Ann. Sci. Math. Québec 33 (2009), no. 1, 39–44. Zbl1207.16039MR2729818
- Karpilovsky G., 10.1007/BF01304809, Arch. Math. (Basel) 38 (1982), 420–422. Zbl0465.16005MR0666913DOI10.1007/BF01304809
- Karpilovsky G., 10.1007/BF01192817, Arch. Math. (Basel) 40 (1983), 503–508. Zbl0498.16004MR0710015DOI10.1007/BF01192817
- Karpilovsky G., Unit Groups of Group Rings, Longman Scientific and Technical, Harlow, 1989. Zbl0687.16010MR1042757
- Karpilovsky G., Units of commutative group algebras, Exposition. Math. 8 (1990), 247–287. Zbl0703.16017MR1062769
- Passman D., The Algebraic Structure of Group Rings, Wiley-Interscience, New York, 1977. Zbl0654.16001MR0470211
- Polcino Milies C., Sehgal S., 10.1007/978-94-010-0405-3, Algebras and Applications, 1, Kluwer, Dordrecht, 2002. Zbl0997.20003MR1896125DOI10.1007/978-94-010-0405-3
- Sehgal S., Topics in Group Rings, Marcel Dekker, New York, 1978. Zbl0411.16004MR0508515
- May W., 10.1016/0021-8693(76)90049-1, J. Algebra 39 (1976), 483–511. Zbl0328.16012MR0399232DOI10.1016/0021-8693(76)90049-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.