Ellipticity of the symplectic twistor complex
Archivum Mathematicum (2011)
- Volume: 047, Issue: 4, page 309-327
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topReferences
top- Borel, A., Wallach, N., Continuous cohomology, discrete subgroups, and representations of reductive groups. Second edition, cond edition, Math. Surveys Monogr. 67 (2000), xviii+260 pp. (2000) MR1721403
- Branson, T., 10.1006/jfan.1997.3162, J. Funct. Anal. 151 (2) (1997), 334–383. (1997) Zbl0904.58054MR1491546DOI10.1006/jfan.1997.3162
- Cahen, M., Schwachhöfer, L., Special symplectic connections, J. Differential Geom. 83 (2) (2009), 229–271. (2009) Zbl1190.53019MR2577468
- Casselman, W., 10.4153/CJM-1989-019-5, Canad. J. Math. 41 (3) (1989), 385–438. (1989) Zbl0702.22016MR1013462DOI10.4153/CJM-1989-019-5
- Fedosov, B., A simple geometrical construction of deformation quantization, J. Differential Geom. 40 (2) (1994), 213–238. (1994) Zbl0812.53034MR1293654
- Gelfand, I., Retakh, V., Shubin, M., 10.1006/aima.1998.1727, Adv. Math. 136 (1) (1998), 104–140. (1998) Zbl0945.53047MR1623673DOI10.1006/aima.1998.1727
- Green, M. B., Hull, C. M., 10.1016/0370-2693(89)91009-5, Phys. Lett. B 225 (1989), 57–65. (1989) MR1006387DOI10.1016/0370-2693(89)91009-5
- Habermann, K., Habermann, L., 10.1007/978-3-540-33421-7_4, Lecture Notes in Math., vol. 1887, Springer-Verlag, Berlin, 2006. (2006) Zbl1102.53032MR2252919DOI10.1007/978-3-540-33421-7_4
- Hotta, R., Elliptic complexes on certain homogeneous spaces, Osaka J. Math. 7 (1970), 117–160. (1970) Zbl0197.47703MR0265519
- Howe, R., 10.1090/S0002-9947-1989-0986027-X, Trans. Amer. Math. Soc. 313 (2) (1989), 539–570. (1989) Zbl0674.15021MR0986027DOI10.1090/S0002-9947-1989-0986027-X
- Kostant, B., Symplectic Spinors, Symposia Mathematica, vol. XIV, Cambridge Univ. Press, 1974, pp. 139–152. (1974) Zbl0321.58015MR0400304
- Krýsl, S., Howe duality for metaplectic group acting on symplectic spinor valued forms, accepted in J. Lie Theory.
- Krýsl, S., Symplectic spinor forms and the invariant operators acting between them, Arch. Math. (Brno) 42 (Supplement) (2006), 279–290. (2006) MR2322414
- Krýsl, S., 10.1007/s00605-009-0158-3, Monatsh. Math. 161 (4) (2010), 381–398. (2010) MR2734967DOI10.1007/s00605-009-0158-3
- Schmid, W., Homogeneous complex manifolds and representations of semisimple Lie group, Representation theory and harmonic analysis on semisimple Lie groups. (Sally, P., Vogan, D., eds.), vol. 31, American Mathematical Society, Providence, Rhode-Island, Mathematical Surveys and Monographs, 1989. (1989) MR1011899
- Shale, D., 10.1090/S0002-9947-1962-0137504-6, Trans. Amer. Math. Soc. 103 (1962), 149–167. (1962) Zbl0171.46901MR0137504DOI10.1090/S0002-9947-1962-0137504-6
- Stein, E., Weiss, G., 10.2307/2373431, Amer. J. Math. 90 (1968), 163–196. (1968) Zbl0157.18303MR0223492DOI10.2307/2373431
- Tondeur, P., 10.1007/BF02566901, Comment. Math. Helv. 36 (1961), 234–244. (1961) MR0138068DOI10.1007/BF02566901
- Vaisman, I., Symplectic Curvature Tensors, Monatshefte für Math., vol. 100, Springer-Verlag, Wien, 1985, pp. 299–327. (1985) MR0814206
- Weil, A., 10.1007/BF02391012, Acta Math. 111 (1964), 143–211. (1964) MR0165033DOI10.1007/BF02391012
- Wells, R., 10.1007/978-0-387-73892-5, Grad. Texts in Math., vol. 65, Springer, New York, 2008. (2008) Zbl1131.32001MR2359489DOI10.1007/978-0-387-73892-5