Symplectic spinor valued forms and invariant operators acting between them

Svatopluk Krýsl

Archivum Mathematicum (2006)

  • Volume: 042, Issue: 5, page 279-290
  • ISSN: 0044-8753

Abstract

top
Exterior differential forms with values in the (Kostant’s) symplectic spinor bundle on a manifold with a given metaplectic structure are decomposed into invariant subspaces. Projections to these invariant subspaces of a covariant derivative associated to a torsion-free symplectic connection are described.

How to cite

top

Krýsl, Svatopluk. "Symplectic spinor valued forms and invariant operators acting between them." Archivum Mathematicum 042.5 (2006): 279-290. <http://eudml.org/doc/249824>.

@article{Krýsl2006,
abstract = {Exterior differential forms with values in the (Kostant’s) symplectic spinor bundle on a manifold with a given metaplectic structure are decomposed into invariant subspaces. Projections to these invariant subspaces of a covariant derivative associated to a torsion-free symplectic connection are described.},
author = {Krýsl, Svatopluk},
journal = {Archivum Mathematicum},
keywords = {symplectic geometry; symplectic spinors; metaplectic structure; higher symplectic spinor module; torsion-free connection},
language = {eng},
number = {5},
pages = {279-290},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Symplectic spinor valued forms and invariant operators acting between them},
url = {http://eudml.org/doc/249824},
volume = {042},
year = {2006},
}

TY - JOUR
AU - Krýsl, Svatopluk
TI - Symplectic spinor valued forms and invariant operators acting between them
JO - Archivum Mathematicum
PY - 2006
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 042
IS - 5
SP - 279
EP - 290
AB - Exterior differential forms with values in the (Kostant’s) symplectic spinor bundle on a manifold with a given metaplectic structure are decomposed into invariant subspaces. Projections to these invariant subspaces of a covariant derivative associated to a torsion-free symplectic connection are described.
LA - eng
KW - symplectic geometry; symplectic spinors; metaplectic structure; higher symplectic spinor module; torsion-free connection
UR - http://eudml.org/doc/249824
ER -

References

top
  1. Baldoni W., General Representation theory of real reductive Lie groups in Bailey, T. N.: Representation Theory and Automorphic Forms, Edinburgh (1996), 61–72. (1996) MR1476492
  2. Britten D. J., Hooper J., Lemire F. W., Simple C n -modules with multiplicities 1 and application, Canad. J. Phys. 72 (1994), 326–335. (1994) MR1297597
  3. Britten D. J., Lemire F. W., On modules of bounded multiplicities for the symplectic algebra, Trans. Amer. Math. Soc. 351, No. 8 (1999), 3413–3431. (1999) MR1615943
  4. Delanghe R., Sommen F., Souèek V., Clifford Algebra and Spinor-valued Functions, Math. Appl., Vol. 53, 1992. (1992) 
  5. Goodman R., Wallach N., Representations and Invariants of the Classical Groups, Cambridge University Press, Cambridge, 2003. Zbl1173.22001
  6. Green M. B., Hull C. M., Covariant quantum mechanics of the superstring, Phys. Lett. B 225 (1989), 57–65. (1989) MR1006387
  7. Habermann K., Symplectic Dirac Operators on Kähler Manifolds, Math. Nachr. 211 (2000), 37–62. MR1743488
  8. Humphreys J. E., Finite and infinite dimensional modules for semisimple Lie algebras, Lie theories and their applications, Lie Theor. Appl., Proc. Ann. Semin. Can. Math. Congr., Kingston 1977 (1978), 1–64. (1977) MR0500456
  9. Kac V. G., Wakimoto M., Modular invariant representations of infinite dimensional Lie algebras and superalgebras, Proc. Natl. Acad. Sci. USA 85, No. 14 (1988), 4956–4960. (1988) Zbl0652.17010MR0949675
  10. Kadlčáková L., Dirac operator in parabolic contact symplectic geometry, Ph.D. thesis, Charles University Prague, Prague, 2001. 
  11. Kashiwara M., Vergne M., On the Segal-Shale-Weil representation and harmonic polynomials, Invent. Math. 44, No. 1 (1978), 1–49. (1978) MR0463359
  12. Klein A., Eine Fouriertransformation für symplektische Spinoren und Anwendungen in der Quantisierung, Diploma Thesis, Technische Universität Berlin, Berlin, 2000. 
  13. Kostant B., On the Tensor Product of a Finite and an Infinite Dimensional Representations, J. Funct. Anal. 20 (1975), 257–285. (1975) MR0414796
  14. Kostant B., Symplectic Spinors, Sympos. Math. XIV (1974), 139–152. (1974) Zbl0321.58015MR0400304
  15. Krýsl S., Invariant differential operators for contact projective geometries, Ph.D. thesis, Charles University Prague, Prague, 2004. 
  16. Krýsl S., Decomposition of the tensor product of the defining representation and a higher symplectic spinor module over 𝔰𝔭 ( 2 n , ) , to appear in J. Lie Theory 17, No. 1 (2007), 63–72. MR2286881
  17. Reuter M., Symplectic Dirac-Kähler Fields, J. Math. Phys. 40 (1999), 5593–5640; electronically available at hep-th/9910085. (1999) Zbl0968.81037MR1722329

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.