Convexity inequalities for estimating generalized conditional entropies from below
Kybernetika (2012)
- Volume: 48, Issue: 2, page 242-253
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topRastegin, Alexey E.. "Convexity inequalities for estimating generalized conditional entropies from below." Kybernetika 48.2 (2012): 242-253. <http://eudml.org/doc/246939>.
@article{Rastegin2012,
abstract = {Generalized entropic functionals are in an active area of research. Hence lower and upper bounds on these functionals are of interest. Lower bounds for estimating Rényi conditional $\alpha $-entropy and two kinds of non-extensive conditional $\alpha $-entropy are obtained. These bounds are expressed in terms of error probability of the standard decision and extend the inequalities known for the regular conditional entropy. The presented inequalities are mainly based on the convexity of some functions. In a certain sense, they are complementary to generalized inequalities of Fano type.},
author = {Rastegin, Alexey E.},
journal = {Kybernetika},
keywords = {Rènyi $\alpha $-entropy; non-extensive entropy of degree $\alpha $; error probability; Bayesian problems; functional convexity; Rényi -entropy; non-extensive entropy; error probability; Bayesian problems; functional convexity; generalized entropic functionals},
language = {eng},
number = {2},
pages = {242-253},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Convexity inequalities for estimating generalized conditional entropies from below},
url = {http://eudml.org/doc/246939},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Rastegin, Alexey E.
TI - Convexity inequalities for estimating generalized conditional entropies from below
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 2
SP - 242
EP - 253
AB - Generalized entropic functionals are in an active area of research. Hence lower and upper bounds on these functionals are of interest. Lower bounds for estimating Rényi conditional $\alpha $-entropy and two kinds of non-extensive conditional $\alpha $-entropy are obtained. These bounds are expressed in terms of error probability of the standard decision and extend the inequalities known for the regular conditional entropy. The presented inequalities are mainly based on the convexity of some functions. In a certain sense, they are complementary to generalized inequalities of Fano type.
LA - eng
KW - Rènyi $\alpha $-entropy; non-extensive entropy of degree $\alpha $; error probability; Bayesian problems; functional convexity; Rényi -entropy; non-extensive entropy; error probability; Bayesian problems; functional convexity; generalized entropic functionals
UR - http://eudml.org/doc/246939
ER -
References
top- L. Baladová, Minimum of average conditional entropy for given minimum probability of error., Kybernetika 2 (1966), 416-422. Zbl0199.21502MR0215641
- T. Cover, J. Thomas, Elements of Information Theory., John Wiley & Sons, New York 1991. Zbl1140.94001MR1122806
- I. Csiszár, 10.3390/e10030261, Entropy 10 (2008), 261-273. Zbl1179.94043DOI10.3390/e10030261
- Z. Daróczy, 10.1016/S0019-9958(70)80040-7, Inform. and Control 16 (1970), 36-51. Zbl0205.46901MR0272528DOI10.1016/S0019-9958(70)80040-7
- M. H. DeGroot, Optimal Statistical Decisions., McGraw-Hill, New York 1970. Zbl1136.62011MR0356303
- D. Erdogmus, J. C. Principe, 10.1023/B:VLSI.0000027493.48841.39, J. VLSI Signal Process. 37 (2004), 305-317. Zbl1073.94507DOI10.1023/B:VLSI.0000027493.48841.39
- R. M. Fano, Transmission of Information: A Statistical Theory of Communications., MIT Press and John Wiley & Sons, New York 1961. Zbl0151.24402MR0134389
- M. Feder, N. Merhav, 10.1109/18.272494, IEEE Trans. Inform. Theory 40 (1994), 259-266. Zbl0802.94004DOI10.1109/18.272494
- S. Furuichi, 10.1063/1.2165744, J. Math. Phys. 47 (2006), 023302. Zbl1111.94008MR2208160DOI10.1063/1.2165744
- M. Gell-Mann, C. Tsallis, eds., Nonextensive Entropy - Interdisciplinary Applications., Oxford University Press, Oxford 2004. Zbl1127.82004MR2073730
- G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities., Cambridge University Press, London 1934. Zbl0634.26008
- J. Havrda, F. Charvát, Quantification methods of classification processes: concept of structural -entropy., Kybernetika 3 (1967), 30-35. MR0209067
- P. Jizba, T. Arimitsu, 10.1016/j.aop.2004.01.002, Ann. Phys. 312 (2004), 17-59. Zbl1044.82001MR2067083DOI10.1016/j.aop.2004.01.002
- R. Kamimura, 10.1007/PL00013828, Algorithmica 22 (1998), 173-197. Zbl0910.68173MR1637503DOI10.1007/PL00013828
- A. Novikov, Optimal sequential procedures with Bayes decision rules., Kybernetika 46 (2010), 754-770. Zbl1201.62095MR2722099
- A. Perez, Information-theoretic risk estimates in statistical decision., Kybernetika 3 (1967), 1-21. Zbl0153.48403MR0208775
- A. E. Rastegin, 10.1088/1751-8113/43/15/155302, J. Phys. A: Math. Theor. 43 (2010), 155302. Zbl1189.81012MR2608279DOI10.1088/1751-8113/43/15/155302
- A. E. Rastegin, 10.1088/1751-8113/44/9/095303, J. Phys. A: Math. Theor. 44 (2011), 095303. Zbl1211.81021MR2771869DOI10.1088/1751-8113/44/9/095303
- A. E. Rastegin, Continuity estimates on the Tsallis relative entropy., E-print arXiv:1102.5154v2 [math-ph] (2011). MR2841748
- A. E. Rastegin, Fano type quantum inequalities in terms of -entropies., Quantum Information Processing (2011), doi 10.1007/s11128-011-0347-6.
- A. Rényi, On measures of entropy and information., In: Proc. 4th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley - Los Angeles 1961, pp. 547-561. Zbl0106.33001MR0132570
- A. Rényi, On the amount of missing information in a random variable concerning an event., J. Math. Sci. 1 (1966), 30-33. MR0210263
- A. Rényi, Statistics and information theory., Stud. Sci. Math. Hung. 2 (1967), 249-256. Zbl0155.27602MR0212964
- A. Rényi, On some basic problems of statistics from the point of view of information theory., In: Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley - Los Angeles 1967, pp. 531-543. Zbl0201.51905MR0212963
- B. Schumacher, 10.1103/PhysRevA.54.2614, Phys. Rev. A 54 (1996), 2614-2628. DOI10.1103/PhysRevA.54.2614
- C. Tsallis, 10.1007/BF01016429, J. Stat. Phys. 52 (1988), 479-487. Zbl1082.82501MR0968597DOI10.1007/BF01016429
- I. Vajda, On the statistical decision problem with discrete paprameter space., Kybernetika 3 (1967), 110-126. MR0215428
- I. Vajda, Bounds of the minimal error probability on checking a finite or countable number of hypotheses., Problemy Peredachii Informacii 4 (1968), 9-19 (in Russian); translated as Problems of Information Transmission 4 (1968), 6-14. MR0267685
- K. Życzkowski, Rényi extrapolation of Shannon entropy., Open Sys. Inform. Dyn. 10 (2003), 297-310; corrigendum in the e-print version arXiv:quant-ph/0305062v2. Zbl1030.94022MR1998623
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.