Approximation properties of bivariate complex q -Bernstein polynomials in the case q > 1

Nazim I. Mahmudov

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 2, page 557-566
  • ISSN: 0011-4642

Abstract

top
In the paper, we discuss convergence properties and Voronovskaja type theorem for bivariate q -Bernstein polynomials for a function analytic in the polydisc D R 1 × D R 2 = { z C : | z | < R 1 } × { z C : | z | < R 1 } for arbitrary fixed q > 1 . We give quantitative Voronovskaja type estimates for the bivariate q -Bernstein polynomials for q > 1 . In the univariate case the similar results were obtained by S. Ostrovska: q -Bernstein polynomials and their iterates. J. Approximation Theory 123 (2003), 232–255. and S. G. Gal: Approximation by Complex Bernstein and Convolution Type Operators. Series on Concrete and Applicable Mathematics 8. World Scientific, New York, 2009.

How to cite

top

Mahmudov, Nazim I.. "Approximation properties of bivariate complex $q$-Bernstein polynomials in the case $q>1$." Czechoslovak Mathematical Journal 62.2 (2012): 557-566. <http://eudml.org/doc/246993>.

@article{Mahmudov2012,
abstract = {In the paper, we discuss convergence properties and Voronovskaja type theorem for bivariate $q$-Bernstein polynomials for a function analytic in the polydisc $D_\{R_\{1\}\}\times D_\{R_\{2\}\}=\lbrace z\in C\colon \vert z\vert <R_\{1\}\rbrace \times \lbrace z\in C\colon \vert z\vert <R_\{1\}\rbrace $ for arbitrary fixed $q>1$. We give quantitative Voronovskaja type estimates for the bivariate $q$-Bernstein polynomials for $q>1$. In the univariate case the similar results were obtained by S. Ostrovska: $q$-Bernstein polynomials and their iterates. J. Approximation Theory 123 (2003), 232–255. and S. G. Gal: Approximation by Complex Bernstein and Convolution Type Operators. Series on Concrete and Applicable Mathematics 8. World Scientific, New York, 2009.},
author = {Mahmudov, Nazim I.},
journal = {Czechoslovak Mathematical Journal},
keywords = {$q$-Bernstein polynomials; modulus of continuity; Voronovskaja type theorem; -Bernstein polynomials; modulus of continuity; Voronovskaja type theorem},
language = {eng},
number = {2},
pages = {557-566},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Approximation properties of bivariate complex $q$-Bernstein polynomials in the case $q>1$},
url = {http://eudml.org/doc/246993},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Mahmudov, Nazim I.
TI - Approximation properties of bivariate complex $q$-Bernstein polynomials in the case $q>1$
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 2
SP - 557
EP - 566
AB - In the paper, we discuss convergence properties and Voronovskaja type theorem for bivariate $q$-Bernstein polynomials for a function analytic in the polydisc $D_{R_{1}}\times D_{R_{2}}=\lbrace z\in C\colon \vert z\vert <R_{1}\rbrace \times \lbrace z\in C\colon \vert z\vert <R_{1}\rbrace $ for arbitrary fixed $q>1$. We give quantitative Voronovskaja type estimates for the bivariate $q$-Bernstein polynomials for $q>1$. In the univariate case the similar results were obtained by S. Ostrovska: $q$-Bernstein polynomials and their iterates. J. Approximation Theory 123 (2003), 232–255. and S. G. Gal: Approximation by Complex Bernstein and Convolution Type Operators. Series on Concrete and Applicable Mathematics 8. World Scientific, New York, 2009.
LA - eng
KW - $q$-Bernstein polynomials; modulus of continuity; Voronovskaja type theorem; -Bernstein polynomials; modulus of continuity; Voronovskaja type theorem
UR - http://eudml.org/doc/246993
ER -

References

top
  1. Butzer, P. L., 10.4153/CJM-1953-014-2, Can. J. Math. 5 (1953), 107-113. (1953) Zbl0050.07002MR0052573DOI10.4153/CJM-1953-014-2
  2. Gal, S. G., Approximation by Complex Bernstein and Convolution Type Operators. Series on Concrete and Applicable Mathematics 8, World Scientific New York (2009). (2009) MR2560489
  3. Hildebrandt, T. H., Schoenberg, I. J., 10.2307/1968205, Ann. Math. 34 (1933), 317-328. (1933) Zbl0006.40204MR1503109DOI10.2307/1968205
  4. Mahmudov, N. I., 10.2478/s11533-009-0006-7, Cent. Eur. J. Math. 7 (2009), 348-356. (2009) Zbl1179.41024MR2506971DOI10.2478/s11533-009-0006-7
  5. Ostrovska, S., 10.1016/S0021-9045(03)00104-7, J. Approximation Theory 123 (2003), 232-255. (2003) Zbl1093.41013MR1990098DOI10.1016/S0021-9045(03)00104-7
  6. Ostrovska, S., 10.1007/s10587-008-0079-7, Czech. Math. J. 58 (2008), 1195-1206. (2008) Zbl1174.41010MR2471176DOI10.1007/s10587-008-0079-7
  7. Phillips, G. M., Bernstein polynomials based on the q -integers, Ann. Numer. Math. 4 (1997), 511-518. (1997) Zbl0881.41008MR1422700
  8. Wang, H., Wu, X., 10.1016/j.jmaa.2007.04.014, J. Math. Anal. Appl. 337 (2008), 744-750. (2008) MR2356108DOI10.1016/j.jmaa.2007.04.014
  9. Wu, Z., 10.1016/j.jmaa.2009.04.003, J. Math. Anal. Appl. 357 (2009), 137-141. (2009) Zbl1236.41011MR2526813DOI10.1016/j.jmaa.2009.04.003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.