Approximation properties of bivariate complex -Bernstein polynomials in the case
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 2, page 557-566
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMahmudov, Nazim I.. "Approximation properties of bivariate complex $q$-Bernstein polynomials in the case $q>1$." Czechoslovak Mathematical Journal 62.2 (2012): 557-566. <http://eudml.org/doc/246993>.
@article{Mahmudov2012,
abstract = {In the paper, we discuss convergence properties and Voronovskaja type theorem for bivariate $q$-Bernstein polynomials for a function analytic in the polydisc $D_\{R_\{1\}\}\times D_\{R_\{2\}\}=\lbrace z\in C\colon \vert z\vert <R_\{1\}\rbrace \times \lbrace z\in C\colon \vert z\vert <R_\{1\}\rbrace $ for arbitrary fixed $q>1$. We give quantitative Voronovskaja type estimates for the bivariate $q$-Bernstein polynomials for $q>1$. In the univariate case the similar results were obtained by S. Ostrovska: $q$-Bernstein polynomials and their iterates. J. Approximation Theory 123 (2003), 232–255. and S. G. Gal: Approximation by Complex Bernstein and Convolution Type Operators. Series on Concrete and Applicable Mathematics 8. World Scientific, New York, 2009.},
author = {Mahmudov, Nazim I.},
journal = {Czechoslovak Mathematical Journal},
keywords = {$q$-Bernstein polynomials; modulus of continuity; Voronovskaja type theorem; -Bernstein polynomials; modulus of continuity; Voronovskaja type theorem},
language = {eng},
number = {2},
pages = {557-566},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Approximation properties of bivariate complex $q$-Bernstein polynomials in the case $q>1$},
url = {http://eudml.org/doc/246993},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Mahmudov, Nazim I.
TI - Approximation properties of bivariate complex $q$-Bernstein polynomials in the case $q>1$
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 2
SP - 557
EP - 566
AB - In the paper, we discuss convergence properties and Voronovskaja type theorem for bivariate $q$-Bernstein polynomials for a function analytic in the polydisc $D_{R_{1}}\times D_{R_{2}}=\lbrace z\in C\colon \vert z\vert <R_{1}\rbrace \times \lbrace z\in C\colon \vert z\vert <R_{1}\rbrace $ for arbitrary fixed $q>1$. We give quantitative Voronovskaja type estimates for the bivariate $q$-Bernstein polynomials for $q>1$. In the univariate case the similar results were obtained by S. Ostrovska: $q$-Bernstein polynomials and their iterates. J. Approximation Theory 123 (2003), 232–255. and S. G. Gal: Approximation by Complex Bernstein and Convolution Type Operators. Series on Concrete and Applicable Mathematics 8. World Scientific, New York, 2009.
LA - eng
KW - $q$-Bernstein polynomials; modulus of continuity; Voronovskaja type theorem; -Bernstein polynomials; modulus of continuity; Voronovskaja type theorem
UR - http://eudml.org/doc/246993
ER -
References
top- Butzer, P. L., 10.4153/CJM-1953-014-2, Can. J. Math. 5 (1953), 107-113. (1953) Zbl0050.07002MR0052573DOI10.4153/CJM-1953-014-2
- Gal, S. G., Approximation by Complex Bernstein and Convolution Type Operators. Series on Concrete and Applicable Mathematics 8, World Scientific New York (2009). (2009) MR2560489
- Hildebrandt, T. H., Schoenberg, I. J., 10.2307/1968205, Ann. Math. 34 (1933), 317-328. (1933) Zbl0006.40204MR1503109DOI10.2307/1968205
- Mahmudov, N. I., 10.2478/s11533-009-0006-7, Cent. Eur. J. Math. 7 (2009), 348-356. (2009) Zbl1179.41024MR2506971DOI10.2478/s11533-009-0006-7
- Ostrovska, S., 10.1016/S0021-9045(03)00104-7, J. Approximation Theory 123 (2003), 232-255. (2003) Zbl1093.41013MR1990098DOI10.1016/S0021-9045(03)00104-7
- Ostrovska, S., 10.1007/s10587-008-0079-7, Czech. Math. J. 58 (2008), 1195-1206. (2008) Zbl1174.41010MR2471176DOI10.1007/s10587-008-0079-7
- Phillips, G. M., Bernstein polynomials based on the -integers, Ann. Numer. Math. 4 (1997), 511-518. (1997) Zbl0881.41008MR1422700
- Wang, H., Wu, X., 10.1016/j.jmaa.2007.04.014, J. Math. Anal. Appl. 337 (2008), 744-750. (2008) MR2356108DOI10.1016/j.jmaa.2007.04.014
- Wu, Z., 10.1016/j.jmaa.2009.04.003, J. Math. Anal. Appl. 357 (2009), 137-141. (2009) Zbl1236.41011MR2526813DOI10.1016/j.jmaa.2009.04.003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.