The sharpness of convergence results for -Bernstein polynomials in the case
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 4, page 1195-1206
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topOstrovska, Sofiya. "The sharpness of convergence results for $q$-Bernstein polynomials in the case $q>1$." Czechoslovak Mathematical Journal 58.4 (2008): 1195-1206. <http://eudml.org/doc/37896>.
@article{Ostrovska2008,
abstract = {Due to the fact that in the case $q>1$ the $q$-Bernstein polynomials are no longer positive linear operators on $C[0,1],$ the study of their convergence properties turns out to be essentially more difficult than that for $q<1.$ In this paper, new saturation theorems related to the convergence of $q$-Bernstein polynomials in the case $q>1$ are proved.},
author = {Ostrovska, Sofiya},
journal = {Czechoslovak Mathematical Journal},
keywords = {$q$-integers; $q$-binomial coefficients; $q$-Bernstein polynomials; uniform convergence; analytic function; Cauchy estimates; -integers; -binomial coefficients; -Bernstein polynomials; uniform convergence; analytic function; Cauchy estimates},
language = {eng},
number = {4},
pages = {1195-1206},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The sharpness of convergence results for $q$-Bernstein polynomials in the case $q>1$},
url = {http://eudml.org/doc/37896},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Ostrovska, Sofiya
TI - The sharpness of convergence results for $q$-Bernstein polynomials in the case $q>1$
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 1195
EP - 1206
AB - Due to the fact that in the case $q>1$ the $q$-Bernstein polynomials are no longer positive linear operators on $C[0,1],$ the study of their convergence properties turns out to be essentially more difficult than that for $q<1.$ In this paper, new saturation theorems related to the convergence of $q$-Bernstein polynomials in the case $q>1$ are proved.
LA - eng
KW - $q$-integers; $q$-binomial coefficients; $q$-Bernstein polynomials; uniform convergence; analytic function; Cauchy estimates; -integers; -binomial coefficients; -Bernstein polynomials; uniform convergence; analytic function; Cauchy estimates
UR - http://eudml.org/doc/37896
ER -
References
top- Cao, J.-D., 10.1006/jmaa.1997.5349, J. Math. Anal. Appl. 209 (1997), 140-146. (1997) Zbl0879.41010MR1444517DOI10.1006/jmaa.1997.5349
- Cao, J.-D., Gonska, H., Kacsó, D., On the impossibility of certain lower estimates for sequences of linear operators, Math. Balkanica 19 (2005), 39-58. (2005) MR2119784
- Cheney, E. W., Sharma, A., On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma 5 (1964), 77-84. (1964) Zbl0146.08202MR0198074
- Cooper, S., Waldron, S., 10.1006/jath.2000.3464, J. Approx. Theory 105 (2000), 133-165. (2000) Zbl0963.41006MR1768528DOI10.1006/jath.2000.3464
- Derriennic, M.-M., Modified Bernstein polynomials and Jacobi polynomials in -calculus, Rendiconti Del Circolo Matematico Di Palermo, Serie II, Suppl. 76 (2005), 269-290. (2005) Zbl1142.41002MR2178441
- Gonska, H., The rate of convergence of bounded linear processes on spaces of continuous functions, Automat. Comput. Appl. Math. 7 (1999), 38-97. (1999) MR1886377
- Gupta, V., 10.1016/j.amc.2007.07.056, Appl. Math. Comput. 197 (2008), 172-178. (2008) Zbl1142.41008MR2396302DOI10.1016/j.amc.2007.07.056
- Gupta, V., Wang, H., The rate of convergence of -Durrmeyer operators for , Math. Meth. Appl. Sci. (2008). (2008) MR2447215
- Habib, A., Umar, S., On generalized Bernstein polynomials, Indian J. Pure Appl. Math. 11 (1980), 177-189. (1980) Zbl0443.41015MR0571065
- Il'inskii, A., Ostrovska, S., 10.1006/jath.2001.3657, J. Approx. Theory 116 (2002), 100-112. (2002) Zbl0999.41007MR1909014DOI10.1006/jath.2001.3657
- Lorentz, G. G., Bernstein Polynomials, Chelsea, New York (1986). (1986) Zbl0989.41504MR0864976
- Lupaş, A., A -analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on numerical and statistical calculus, No. 9 (1987). (1987)
- Novikov, I. Ya., 10.1023/A:1013959231555, Mathematical Notes 71 (2002), 217-229. (2002) Zbl1034.42040MR1900797DOI10.1023/A:1013959231555
- Ostrovska, S., 10.1016/S0021-9045(03)00104-7, J. Approx. Theory 123 (2003), 232-255. (2003) Zbl1093.41013MR1990098DOI10.1016/S0021-9045(03)00104-7
- Ostrovska, S., On the -Bernstein polynomials, Advanced Studies in Contemporary Mathematics 11 (2005), 193-204. (2005) Zbl1116.41013MR2169894
- Ostrovska, S., 10.1016/j.jat.2005.09.015, J. Approx. Theory 138 (2006), 37-53. (2006) Zbl1098.41006MR2197601DOI10.1016/j.jat.2005.09.015
- Petrone, S., 10.1111/1467-9469.00155, Scan. J. Statist. 26 (1999), 373-393. (1999) Zbl0939.62046MR1712051DOI10.1111/1467-9469.00155
- Videnskii, V. S., 10.1007/3-7643-7340-7_15, Operator Theory, Advances and Applications, Vol. 158 (2005), 213-222. (2005) MR2147598DOI10.1007/3-7643-7340-7_15
- Videnskii, V. S., On the polynomials with respect to the generalized Bernstein basis, In: Problems of modern mathematics and mathematical education, Hertzen readings. St.-Petersburg (2005), 130-134 Russian. (2005)
- Wang, H., 10.1016/j.jat.2004.12.010, J. Approx. Theory 132 (2005), 258-264. (2005) Zbl1118.41015MR2118520DOI10.1016/j.jat.2004.12.010
- Wang, H., 10.1016/j.jat.2006.08.005, J. Approx. Theory 145 (2007), 182-195. (2007) Zbl1112.41016MR2312464DOI10.1016/j.jat.2006.08.005
- Wang, H., Wu, X. Z., 10.1016/j.jmaa.2007.04.014, J. Math. Anal.Appl. 337 (2008), 744-750. (2008) MR2356108DOI10.1016/j.jmaa.2007.04.014
- Wang, H., 10.1016/j.jmaa.2007.09.004, J. Math. Anal. Appl. 340 (2008), 1096-1108. (2008) Zbl1144.41004MR2390913DOI10.1016/j.jmaa.2007.09.004
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.