Some logarithmic functional equations
Vichian Laohakosol; Watcharapon Pimsert; Charinthip Hengkrawit; Bruce Ebanks
Archivum Mathematicum (2012)
- Volume: 048, Issue: 3, page 173-181
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topLaohakosol, Vichian, et al. "Some logarithmic functional equations." Archivum Mathematicum 048.3 (2012): 173-181. <http://eudml.org/doc/247004>.
@article{Laohakosol2012,
abstract = {The functional equation $f(y-x) - g(xy) = h\left(1/x-1/y\right)$ is solved for general solution. The result is then applied to show that the three functional equations $f(xy)=f(x)+f(y)$, $f(y-x)-f(xy)=f(1/x-1/y)$ and $f(y-x)-f(x)-f(y)=f(1/x-1/y)$ are equivalent. Finally, twice differentiable solution functions of the functional equation $f(y-x) - g_1(x)-g_2(y) = h\left(1/x-1/y\right)$ are determined.},
author = {Laohakosol, Vichian, Pimsert, Watcharapon, Hengkrawit, Charinthip, Ebanks, Bruce},
journal = {Archivum Mathematicum},
keywords = {logarithmic functional equation; Pexider equations; logarithmic functional equation; Pexider-type functional equation},
language = {eng},
number = {3},
pages = {173-181},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Some logarithmic functional equations},
url = {http://eudml.org/doc/247004},
volume = {048},
year = {2012},
}
TY - JOUR
AU - Laohakosol, Vichian
AU - Pimsert, Watcharapon
AU - Hengkrawit, Charinthip
AU - Ebanks, Bruce
TI - Some logarithmic functional equations
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 3
SP - 173
EP - 181
AB - The functional equation $f(y-x) - g(xy) = h\left(1/x-1/y\right)$ is solved for general solution. The result is then applied to show that the three functional equations $f(xy)=f(x)+f(y)$, $f(y-x)-f(xy)=f(1/x-1/y)$ and $f(y-x)-f(x)-f(y)=f(1/x-1/y)$ are equivalent. Finally, twice differentiable solution functions of the functional equation $f(y-x) - g_1(x)-g_2(y) = h\left(1/x-1/y\right)$ are determined.
LA - eng
KW - logarithmic functional equation; Pexider equations; logarithmic functional equation; Pexider-type functional equation
UR - http://eudml.org/doc/247004
ER -
References
top- Chung, J.–Y., 10.1016/j.jmaa.2007.02.072, J. Math. Anal. Appl. 336 (2007), 745–748. (2007) Zbl1130.39018MR2348539DOI10.1016/j.jmaa.2007.02.072
- Ebanks, B., 10.1007/BF03323552, Result. Math. 42 (2002), 37–41. (2002) Zbl1044.39018MR1934223DOI10.1007/BF03323552
- Heuvers, K. J., 10.1007/s000100050112, Aequationes Math. 58 (1999), 260–264. (1999) MR1715396DOI10.1007/s000100050112
- Heuvers, K. J., Kannappan, P., 10.1007/s00010-005-2792-8, Aequationes Math. 70 (2005), 117–121. (2005) Zbl1079.39019MR2167989DOI10.1007/s00010-005-2792-8
- Kannappan, P., Functional Equations and Inequalities with Applications, Springer, Dordrecht, 2009. (2009) Zbl1178.39032MR2524097
- Kuczma, M., An Introduction to the Theory of Functional Equations and Inequalities, second ed., Birkhäuser, Basel, 2009. (2009) Zbl1221.39041MR2467621
- Rätz, J., On the theory of functional equation , Elem. Math. 21 (1966), 10–13. (1966)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.