Displaying similar documents to “Some logarithmic functional equations”

A note on the diophantine equation k 2 - 1 = q n + 1

Maohua Le (1998)

Colloquium Mathematicae

Similarity:

In this note we prove that the equation k 2 - 1 = q n + 1 , q 2 , n 3 , has only finitely many positive integer solutions ( k , q , n ) . Moreover, all solutions ( k , q , n ) satisfy k 10 10 182 , q 10 10 165 and n 2 · 10 17 .

Landau’s function for one million billions

Marc Deléglise, Jean-Louis Nicolas, Paul Zimmermann (2008)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let 𝔖 n denote the symmetric group with n letters, and g ( n ) the maximal order of an element of 𝔖 n . If the standard factorization of M into primes is M = q 1 α 1 q 2 α 2 ... q k α k , we define ( M ) to be q 1 α 1 + q 2 α 2 + ... + q k α k ; one century ago, E. Landau proved that g ( n ) = max ( M ) n M and that, when n goes to infinity, log g ( n ) n log ( n ) . There exists a basic algorithm to compute g ( n ) for 1 n N ; its running time is 𝒪 N 3 / 2 / log N and the needed memory is 𝒪 ( N ) ; it allows computing g ( n ) up to, say, one million. We describe an algorithm to calculate g ( n ) for n up to 10 15 . The main idea is to use the...

Approximation of values of hypergeometric functions by restricted rationals

Carsten Elsner, Takao Komatsu, Iekata Shiokawa (2007)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We compute upper and lower bounds for the approximation of hyperbolic functions at points 1 / s ( s = 1 , 2 , ) by rationals x / y , such that x , y satisfy a quadratic equation. For instance, all positive integers x , y with y 0 ( mod 2 ) solving the Pythagorean equation x 2 + y 2 = z 2 satisfy | y sinh ( 1 / s ) - x | log log y log y . Conversely, for every s = 1 , 2 , there are infinitely many coprime integers x , y , such that | y sinh ( 1 / s ) - x | log log y log y and x 2 + y 2 = z 2 hold simultaneously for some integer z . A generalization to the approximation of h ( e 1 / s ) for rational...

On an arithmetic function considered by Pillai

Florian Luca, Ravindranathan Thangadurai (2009)

Journal de Théorie des Nombres de Bordeaux

Similarity:

For every positive integer n let p ( n ) be the largest prime number p n . Given a positive integer n = n 1 , we study the positive integer r = R ( n ) such that if we define recursively n i + 1 = n i - p ( n i ) for i 1 , then n r is a prime or 1 . We obtain upper bounds for R ( n ) as well as an estimate for the set of n whose R ( n ) takes on a fixed value k .

On the mean square of the divisor function in short intervals

Aleksandar Ivić (2009)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We provide upper bounds for the mean square integral X 2 X 𝔻 k ( x + h ) - 𝔻 k ( x ) 2 d x , where h = h ( X ) 1 , h = o ( x ) as X and h lies in a suitable range. For k 2 a fixed integer, 𝔻 k ( x ) is the error term in the asymptotic formula for the summatory function of the divisor function d k ( n ) , generated by ζ k ( s ) .