The Doob inequality and strong law of large numbers for multidimensional arrays in general Banach spaces
Nguyen Van Huan; Nguyen Van Quang
Kybernetika (2012)
- Volume: 48, Issue: 2, page 254-267
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHuan, Nguyen Van, and Quang, Nguyen Van. "The Doob inequality and strong law of large numbers for multidimensional arrays in general Banach spaces." Kybernetika 48.2 (2012): 254-267. <http://eudml.org/doc/247007>.
@article{Huan2012,
abstract = {We establish the Doob inequality for martingale difference arrays and provide a sufficient condition so that the strong law of large numbers would hold for an arbitrary array of random elements without imposing any geometric condition on the Banach space. Some corollaries are derived from the main results, they are more general than some well-known ones.},
author = {Huan, Nguyen Van, Quang, Nguyen Van},
journal = {Kybernetika},
keywords = {the Doob inequality; strong law of large numbers; martingale difference array; Banach space; strong law of large numbers; the Doob inequality; martingale difference array; Banach space},
language = {eng},
number = {2},
pages = {254-267},
publisher = {Institute of Information Theory and Automation AS CR},
title = {The Doob inequality and strong law of large numbers for multidimensional arrays in general Banach spaces},
url = {http://eudml.org/doc/247007},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Huan, Nguyen Van
AU - Quang, Nguyen Van
TI - The Doob inequality and strong law of large numbers for multidimensional arrays in general Banach spaces
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 2
SP - 254
EP - 267
AB - We establish the Doob inequality for martingale difference arrays and provide a sufficient condition so that the strong law of large numbers would hold for an arbitrary array of random elements without imposing any geometric condition on the Banach space. Some corollaries are derived from the main results, they are more general than some well-known ones.
LA - eng
KW - the Doob inequality; strong law of large numbers; martingale difference array; Banach space; strong law of large numbers; the Doob inequality; martingale difference array; Banach space
UR - http://eudml.org/doc/247007
ER -
References
top- P. Assouad, Espaces -lisses et -convexes, inégalités de Burkholder., Séminaire Maurey-Schwartz 1975. Zbl0318.46023MR0407963
- R. Cairoli, J. B. Walsh, 10.1007/BF02392100, Acta Math. 134 (1975), 111-183. Zbl0334.60026MR0420845DOI10.1007/BF02392100
- A. Gut, Probability: A Graduate Course., Springer, New York 2005. Zbl1151.60300MR2125120
- J. O. Howell, R. L. Taylor, Marcinkiewicz-Zygmund Weak Laws of Large Numbers for Unconditional Random Elements in Banach Spaces, Probability in Banach Spaces., Springer, Berlin - New York 1981. MR0647964
- N. V. Huan, N. V. Quang, A. Volodin, 10.1134/S1995080210040037, Lobachevskii J. Math. 31 (2010), 326-335. MR2745742DOI10.1134/S1995080210040037
- H. C. Kim, The Hájek-Rényi inequality for weighted sums of negatively orthant dependent random variables., Internat. J. Contemporary Math. Sci. 1 (2006), 297-303. MR2289035
- Z. A. Lagodowski, Strong laws of large numbers for -valued random fields., Discrete Dynamics in Nature and Society (2009). MR2504837
- F. Móricz, 10.1016/0047-259X(89)90039-0, J. Multivariate Anal. 30 (1989), 255-278. Zbl0798.60033MR1015372DOI10.1016/0047-259X(89)90039-0
- F. Móricz, U. Stadtmüller, M. Thalmaier, 10.1007/s10959-007-0127-5, J. Theoret. Probab. 21 (2008), 660-671. MR2425363DOI10.1007/s10959-007-0127-5
- F. Móricz, K. L. Su, R. L. Taylor, 10.1007/BF01874465, Acta Math. Hungar. 65 (1994), 1-16. Zbl0806.60002MR1275656DOI10.1007/BF01874465
- C. Noszály, T. Tómács, A general approach to strong laws of large numbers for fields of random variables., Ann. Univ. Sci. Budapest. Sect. Math. 43 (2001), 61-78. Zbl0993.60029MR1847869
- N. V. Quang, N. V. Huan, 10.1016/j.spl.2009.05.014, Stat. Probab. Lett. 79 (2009), 1891-1899. MR2567447DOI10.1016/j.spl.2009.05.014
- N. V. Quang, N. V. Huan, 10.1007/s13171-010-0020-7, Sankhyā 72 (2010), 344-358. Zbl1213.60086MR2746116DOI10.1007/s13171-010-0020-7
- N. V. Quang, N. V. Huan, A Hájek-Rényi type maximal inequality and strong laws of large numbers for multidimensional arrays., J. Inequalities Appl. 2010. Zbl1215.60022MR2765284
- A. Rosalsky, L. V. Thanh, 10.1080/07362990701420142, Stochastic Analysis and Applications 25 (2007), 895-911. Zbl1124.60007MR2335071DOI10.1080/07362990701420142
- A. Rosalsky, L. V. Thanh, On the strong law of large numbers for sequences of blockwise independent and blockwise -orthoganal random element in rademacher type banach spaces., Probab. Math. Statist. 27 (2007), 205-222. MR2445993
- Q. M. Shao, 10.1023/A:1007849609234, J. Theor. Probab. 13 (2000), 343-356. Zbl0971.60015MR1777538DOI10.1023/A:1007849609234
- R. T. Smythe, 10.1214/aop/1176997031, Ann. Probab. 1 (1973), 164-170. Zbl0258.60026MR0346881DOI10.1214/aop/1176997031
- L. V. Thanh, On the strong law of large numbers for -dimensional arrays of random variables., Electron. Comm. Probab. 12 (2007), 434-441. Zbl1128.60023MR2365645
- W. A. Woyczyński, On Marcinkiewicz-Zygmund laws of large numbers in Banach spaces and related rates of convergence., Probab. Math. Statist. 1 (1981), 117-131. Zbl0502.60006MR0626306
- W. A. Woyczyński, Asymptotic Behavior of Martingales in Banach Spaces, Martingale Theory in Harmonic Analysis and Banach Spaces., Springer, Berlin - New York 1982. MR0451394
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.