-manifolds and integrable systems of hydrodynamic type
Paolo Lorenzoni; Marco Pedroni; Andrea Raimondo
Archivum Mathematicum (2011)
- Volume: 047, Issue: 3, page 163-180
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topLorenzoni, Paolo, Pedroni, Marco, and Raimondo, Andrea. "$F$-manifolds and integrable systems of hydrodynamic type." Archivum Mathematicum 047.3 (2011): 163-180. <http://eudml.org/doc/247044>.
@article{Lorenzoni2011,
abstract = {We investigate the role of Hertling-Manin condition on the structure constants of an associative commutative algebra in the theory of integrable systems of hydrodynamic type. In such a framework we introduce the notion of $F$-manifold with compatible connection generalizing a structure introduced by Manin.},
author = {Lorenzoni, Paolo, Pedroni, Marco, Raimondo, Andrea},
journal = {Archivum Mathematicum},
keywords = {F-manifolds; Frobenius manifolds; integrable systems; PDEs of hydrodynamic type; -manifold; Frobenius manifold; integrable system; PDEs of hydrodynamic type},
language = {eng},
number = {3},
pages = {163-180},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {$F$-manifolds and integrable systems of hydrodynamic type},
url = {http://eudml.org/doc/247044},
volume = {047},
year = {2011},
}
TY - JOUR
AU - Lorenzoni, Paolo
AU - Pedroni, Marco
AU - Raimondo, Andrea
TI - $F$-manifolds and integrable systems of hydrodynamic type
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 3
SP - 163
EP - 180
AB - We investigate the role of Hertling-Manin condition on the structure constants of an associative commutative algebra in the theory of integrable systems of hydrodynamic type. In such a framework we introduce the notion of $F$-manifold with compatible connection generalizing a structure introduced by Manin.
LA - eng
KW - F-manifolds; Frobenius manifolds; integrable systems; PDEs of hydrodynamic type; -manifold; Frobenius manifold; integrable system; PDEs of hydrodynamic type
UR - http://eudml.org/doc/247044
ER -
References
top- Benney, D. J., Some properties of long nonlinear waves, Stud. Appl. Math. 52 (1973), 45–50. (1973) Zbl0259.35011
- Chang, Jen-Hsu, 10.1088/1751-8113/40/43/009, J. Phys. A: Math. Theor. 40 (2007), 12973–12785. (2007) Zbl1127.37047MR2385221DOI10.1088/1751-8113/40/43/009
- Dubrovin, B. A., Geometry of 2D topological field theories, Integrable Systems and Quantum Groups (Francaviglia, M., Greco, S., eds.), vol. 1620, Montecatini Terme, 1993, springer lecture notes in math. ed., 1996, pp. 120–348. (1996) Zbl0841.58065MR1397274
- Dubrovin, B. A., Flat pencils of metrics and Frobenius manifolds, Integrable systems and algebraic geometry, World Sci. Publ., River Edge, NJ, 1998, pp. 47–72. (1998) Zbl0963.53054MR1672100
- Dubrovin, B. A., Liu, S. Q., Zhang, Y., 10.1016/j.aim.2008.06.009, Adv. Math. 120 (3) (2008), 780–837. (2008) Zbl1153.37032MR2442053DOI10.1016/j.aim.2008.06.009
- Dubrovin, B. A., Novikov, S. P., Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory, Uspekhi Mat. Nauk 44 (1989), 35–124, English translation in Russ. Math. Surveys 44 (1989), 35–124. (1989) Zbl0712.58032MR1037010
- Dubrovin, B.A., 10.1007/BF01077332, Funct. Anal. Appl. 24 (4) (1990), 280–285, (English. Russian original), translation from Funkts. Anal. Prilozh. 24, No.4, 25-30 (1990). (1990) Zbl0850.76008MR1092800DOI10.1007/BF01077332
- Ferapontov, E. V., 10.1007/BF01085489, Funct. Anal. Appl. 25 (3) (1991), 195–204. (1991) Zbl0742.58018MR1139873DOI10.1007/BF01085489
- Ferguson, J. T., Strachan, I. A. B., 10.1007/s00220-008-0464-y, Comm. Math. Phys. 280 (2008), 1–25. (2008) Zbl1148.53067MR2391189DOI10.1007/s00220-008-0464-y
- Gibbons, J., Lorenzoni, P., Raimondo, A., Purely nonlocal Hamiltonian formalism for systems of hydrodynamic type, arXiv:0812.3317. Zbl1197.53099MR2654091
- Gibbons, J., Lorenzoni, P., Raimondo, A., 10.1007/s00220-008-0686-z, Comm. Math. Phys. 287 (2009), 291–322. (2009) MR2480750DOI10.1007/s00220-008-0686-z
- Gibbons, J., Tsarev, S. P., 10.1016/0375-9601(95)00954-X, Phys. Lett. A 211 (1) (1996), 19–24. (1996) Zbl1072.35588MR1372470DOI10.1016/0375-9601(95)00954-X
- Gibbons, J., Tsarev, S. P., 10.1016/S0375-9601(99)00389-8, Phys. Lett. A 258 (4–6) (1999), 263–271. (1999) Zbl0936.35184MR1710008DOI10.1016/S0375-9601(99)00389-8
- Hertling, C., Multiplication on the tangent bundle, arXiv:math/9910116.
- Hertling, C., Manin, Y., 10.1155/S1073792899000148, Internat. Math. Res. Notices 6 (1999), 277–286. (1999) Zbl0960.58003MR1680372DOI10.1155/S1073792899000148
- Konopelchenko, B. G., Magri, F., 10.1007/s00220-007-0295-2, Comm. Math. Phys. 274 (2007), 627–658. (2007) Zbl1136.37038MR2328906DOI10.1007/s00220-007-0295-2
- Lebedev, D., Manin, Y., 10.1016/0375-9601(79)90756-4, Phys. Lett. A 74 (1979), 154–156. (1979) MR0591318DOI10.1016/0375-9601(79)90756-4
- Manin, Y., 10.1016/j.aim.2004.12.003, Adv. Math. 198 (1) (2005), 5–26. (2005) Zbl1085.14023MR2183247DOI10.1016/j.aim.2004.12.003
- Mokhov, O. I., 10.1007/s10688-006-0002-7, Funct. Anal. Appl. 40 (2006), 11–23. (2006) MR2223246DOI10.1007/s10688-006-0002-7
- Mokhov, O. I., Frobenius manifolds as a special class of submanifolds in pseudo-Euclidean spaces, Geometry, Topology, and Mathematical Physics, vol. 224, Amer. Math. Soc. Transl. Ser. 2, 2008, pp. 213–246. (2008) Zbl1155.53056MR2462363
- Mokhov, O. I., Ferapontov, E. V., 10.1070/RM1990v045n03ABEH002351, Russ. Math. Surv. 45 (3) (1990), 218–219. (1990) MR1071942DOI10.1070/RM1990v045n03ABEH002351
- Pavlov, M. V., Integrability of Egorov systems of hydrodynamic type, Teoret. Mat. Fiz. 150 (2) (2007), 263–285, (Russian) translation in Theoret. and Math. Phys. 150 (2) (2007), 225–243. (2007) MR2325928
- Pavlov, M. V., Svinolupov, S. I., Sharipov, R. A., 10.1007/BF02509552, Funktsional. Anal. i Prilozhen 30 (1) (1996), 18–29, 96, (Russian) translation in Funct. Anal. Appl. 30 (1) (1996), 15–22. (1996) MR1387485DOI10.1007/BF02509552
- Pavlov, M. V., Tsarev, S. P., 10.1023/A:1022971910438, Funktsional. Anal. i Prilozhen. 37 (1) (2003), 38–54, (Russian). (2003) Zbl1019.37048MR1988008DOI10.1023/A:1022971910438
- Strachan, I. A. B., 10.1016/j.difgeo.2003.10.001, Differential Geom. Appl. 20 (1) (2004), 67–99. (2004) Zbl1049.53060MR2030167DOI10.1016/j.difgeo.2003.10.001
- Tsarev, S. P., 10.1070/IM1991v037n02ABEH002069, USSR Izv. 37 (1991), 397–419. (1991) MR1086085DOI10.1070/IM1991v037n02ABEH002069
- Zakharov, V. E., Benney equations and quasiclassical approximation in the inverse problem, Funktional. Anal. i Prilozhen 14 (1980), 15–24. (1980) MR0575201
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.