F -manifolds and integrable systems of hydrodynamic type

Paolo Lorenzoni; Marco Pedroni; Andrea Raimondo

Archivum Mathematicum (2011)

  • Volume: 047, Issue: 3, page 163-180
  • ISSN: 0044-8753

Abstract

top
We investigate the role of Hertling-Manin condition on the structure constants of an associative commutative algebra in the theory of integrable systems of hydrodynamic type. In such a framework we introduce the notion of F -manifold with compatible connection generalizing a structure introduced by Manin.

How to cite

top

Lorenzoni, Paolo, Pedroni, Marco, and Raimondo, Andrea. "$F$-manifolds and integrable systems of hydrodynamic type." Archivum Mathematicum 047.3 (2011): 163-180. <http://eudml.org/doc/247044>.

@article{Lorenzoni2011,
abstract = {We investigate the role of Hertling-Manin condition on the structure constants of an associative commutative algebra in the theory of integrable systems of hydrodynamic type. In such a framework we introduce the notion of $F$-manifold with compatible connection generalizing a structure introduced by Manin.},
author = {Lorenzoni, Paolo, Pedroni, Marco, Raimondo, Andrea},
journal = {Archivum Mathematicum},
keywords = {F-manifolds; Frobenius manifolds; integrable systems; PDEs of hydrodynamic type; -manifold; Frobenius manifold; integrable system; PDEs of hydrodynamic type},
language = {eng},
number = {3},
pages = {163-180},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {$F$-manifolds and integrable systems of hydrodynamic type},
url = {http://eudml.org/doc/247044},
volume = {047},
year = {2011},
}

TY - JOUR
AU - Lorenzoni, Paolo
AU - Pedroni, Marco
AU - Raimondo, Andrea
TI - $F$-manifolds and integrable systems of hydrodynamic type
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 3
SP - 163
EP - 180
AB - We investigate the role of Hertling-Manin condition on the structure constants of an associative commutative algebra in the theory of integrable systems of hydrodynamic type. In such a framework we introduce the notion of $F$-manifold with compatible connection generalizing a structure introduced by Manin.
LA - eng
KW - F-manifolds; Frobenius manifolds; integrable systems; PDEs of hydrodynamic type; -manifold; Frobenius manifold; integrable system; PDEs of hydrodynamic type
UR - http://eudml.org/doc/247044
ER -

References

top
  1. Benney, D. J., Some properties of long nonlinear waves, Stud. Appl. Math. 52 (1973), 45–50. (1973) Zbl0259.35011
  2. Chang, Jen-Hsu, 10.1088/1751-8113/40/43/009, J. Phys. A: Math. Theor. 40 (2007), 12973–12785. (2007) Zbl1127.37047MR2385221DOI10.1088/1751-8113/40/43/009
  3. Dubrovin, B. A., Geometry of 2D topological field theories, Integrable Systems and Quantum Groups (Francaviglia, M., Greco, S., eds.), vol. 1620, Montecatini Terme, 1993, springer lecture notes in math. ed., 1996, pp. 120–348. (1996) Zbl0841.58065MR1397274
  4. Dubrovin, B. A., Flat pencils of metrics and Frobenius manifolds, Integrable systems and algebraic geometry, World Sci. Publ., River Edge, NJ, 1998, pp. 47–72. (1998) Zbl0963.53054MR1672100
  5. Dubrovin, B. A., Liu, S. Q., Zhang, Y., 10.1016/j.aim.2008.06.009, Adv. Math. 120 (3) (2008), 780–837. (2008) Zbl1153.37032MR2442053DOI10.1016/j.aim.2008.06.009
  6. Dubrovin, B. A., Novikov, S. P., Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory, Uspekhi Mat. Nauk 44 (1989), 35–124, English translation in Russ. Math. Surveys 44 (1989), 35–124. (1989) Zbl0712.58032MR1037010
  7. Dubrovin, B.A., 10.1007/BF01077332, Funct. Anal. Appl. 24 (4) (1990), 280–285, (English. Russian original), translation from Funkts. Anal. Prilozh. 24, No.4, 25-30 (1990). (1990) Zbl0850.76008MR1092800DOI10.1007/BF01077332
  8. Ferapontov, E. V., 10.1007/BF01085489, Funct. Anal. Appl. 25 (3) (1991), 195–204. (1991) Zbl0742.58018MR1139873DOI10.1007/BF01085489
  9. Ferguson, J. T., Strachan, I. A. B., 10.1007/s00220-008-0464-y, Comm. Math. Phys. 280 (2008), 1–25. (2008) Zbl1148.53067MR2391189DOI10.1007/s00220-008-0464-y
  10. Gibbons, J., Lorenzoni, P., Raimondo, A., Purely nonlocal Hamiltonian formalism for systems of hydrodynamic type, arXiv:0812.3317. Zbl1197.53099MR2654091
  11. Gibbons, J., Lorenzoni, P., Raimondo, A., 10.1007/s00220-008-0686-z, Comm. Math. Phys. 287 (2009), 291–322. (2009) MR2480750DOI10.1007/s00220-008-0686-z
  12. Gibbons, J., Tsarev, S. P., 10.1016/0375-9601(95)00954-X, Phys. Lett. A 211 (1) (1996), 19–24. (1996) Zbl1072.35588MR1372470DOI10.1016/0375-9601(95)00954-X
  13. Gibbons, J., Tsarev, S. P., 10.1016/S0375-9601(99)00389-8, Phys. Lett. A 258 (4–6) (1999), 263–271. (1999) Zbl0936.35184MR1710008DOI10.1016/S0375-9601(99)00389-8
  14. Hertling, C., Multiplication on the tangent bundle, arXiv:math/9910116. 
  15. Hertling, C., Manin, Y., 10.1155/S1073792899000148, Internat. Math. Res. Notices 6 (1999), 277–286. (1999) Zbl0960.58003MR1680372DOI10.1155/S1073792899000148
  16. Konopelchenko, B. G., Magri, F., 10.1007/s00220-007-0295-2, Comm. Math. Phys. 274 (2007), 627–658. (2007) Zbl1136.37038MR2328906DOI10.1007/s00220-007-0295-2
  17. Lebedev, D., Manin, Y., 10.1016/0375-9601(79)90756-4, Phys. Lett. A 74 (1979), 154–156. (1979) MR0591318DOI10.1016/0375-9601(79)90756-4
  18. Manin, Y., 10.1016/j.aim.2004.12.003, Adv. Math. 198 (1) (2005), 5–26. (2005) Zbl1085.14023MR2183247DOI10.1016/j.aim.2004.12.003
  19. Mokhov, O. I., 10.1007/s10688-006-0002-7, Funct. Anal. Appl. 40 (2006), 11–23. (2006) MR2223246DOI10.1007/s10688-006-0002-7
  20. Mokhov, O. I., Frobenius manifolds as a special class of submanifolds in pseudo-Euclidean spaces, Geometry, Topology, and Mathematical Physics, vol. 224, Amer. Math. Soc. Transl. Ser. 2, 2008, pp. 213–246. (2008) Zbl1155.53056MR2462363
  21. Mokhov, O. I., Ferapontov, E. V., 10.1070/RM1990v045n03ABEH002351, Russ. Math. Surv. 45 (3) (1990), 218–219. (1990) MR1071942DOI10.1070/RM1990v045n03ABEH002351
  22. Pavlov, M. V., Integrability of Egorov systems of hydrodynamic type, Teoret. Mat. Fiz. 150 (2) (2007), 263–285, (Russian) translation in Theoret. and Math. Phys. 150 (2) (2007), 225–243. (2007) MR2325928
  23. Pavlov, M. V., Svinolupov, S. I., Sharipov, R. A., 10.1007/BF02509552, Funktsional. Anal. i Prilozhen 30 (1) (1996), 18–29, 96, (Russian) translation in Funct. Anal. Appl. 30 (1) (1996), 15–22. (1996) MR1387485DOI10.1007/BF02509552
  24. Pavlov, M. V., Tsarev, S. P., 10.1023/A:1022971910438, Funktsional. Anal. i Prilozhen. 37 (1) (2003), 38–54, (Russian). (2003) Zbl1019.37048MR1988008DOI10.1023/A:1022971910438
  25. Strachan, I. A. B., 10.1016/j.difgeo.2003.10.001, Differential Geom. Appl. 20 (1) (2004), 67–99. (2004) Zbl1049.53060MR2030167DOI10.1016/j.difgeo.2003.10.001
  26. Tsarev, S. P., 10.1070/IM1991v037n02ABEH002069, USSR Izv. 37 (1991), 397–419. (1991) MR1086085DOI10.1070/IM1991v037n02ABEH002069
  27. Zakharov, V. E., Benney equations and quasiclassical approximation in the inverse problem, Funktional. Anal. i Prilozhen 14 (1980), 15–24. (1980) MR0575201

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.