Manifold-valued generalized functions in full Colombeau spaces
Michael Kunzinger; Eduard Nigsch
Commentationes Mathematicae Universitatis Carolinae (2011)
- Volume: 52, Issue: 4, page 519-534
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKunzinger, Michael, and Nigsch, Eduard. "Manifold-valued generalized functions in full Colombeau spaces." Commentationes Mathematicae Universitatis Carolinae 52.4 (2011): 519-534. <http://eudml.org/doc/247052>.
@article{Kunzinger2011,
abstract = {We introduce the notion of generalized function taking values in a smooth manifold into the setting of full Colombeau algebras. After deriving a number of characterization results we also introduce a corresponding concept of generalized vector bundle homomorphisms and, based on this, provide a definition of tangent map for such generalized functions.},
author = {Kunzinger, Michael, Nigsch, Eduard},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {algebras of generalized functions; manifold-valued generalized functions; full Colombeau algebras; generalized function; manifold-valued generalized function; full Colombeau algebra},
language = {eng},
number = {4},
pages = {519-534},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Manifold-valued generalized functions in full Colombeau spaces},
url = {http://eudml.org/doc/247052},
volume = {52},
year = {2011},
}
TY - JOUR
AU - Kunzinger, Michael
AU - Nigsch, Eduard
TI - Manifold-valued generalized functions in full Colombeau spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 4
SP - 519
EP - 534
AB - We introduce the notion of generalized function taking values in a smooth manifold into the setting of full Colombeau algebras. After deriving a number of characterization results we also introduce a corresponding concept of generalized vector bundle homomorphisms and, based on this, provide a definition of tangent map for such generalized functions.
LA - eng
KW - algebras of generalized functions; manifold-valued generalized functions; full Colombeau algebras; generalized function; manifold-valued generalized function; full Colombeau algebra
UR - http://eudml.org/doc/247052
ER -
References
top- Abraham R., Marsden J.E., Ratiu T., 10.1007/978-1-4612-1029-0_8, Applied Mathematical Sciences, 75, Springer, New York, 1988. Zbl0875.58002MR0960687DOI10.1007/978-1-4612-1029-0_8
- Clarke C.J.S., Vickers J.A., Wilson J.P., 10.1088/0264-9381/13/9/013, Classical Quantum Gravity 13 (1996), no. 9, 2485–2498. Zbl0859.53074MR1410817DOI10.1088/0264-9381/13/9/013
- Colombeau J.-F., New Generalized Functions and Multiplication of Distributions, North-Holland Mathematics Studies, 84, North-Holland, Amsterdam, 1984. Zbl0761.46021MR0738781
- Colombeau J.-F., Elementary Introduction to New Generalized Functions, North-Holland Mathematics Studies, 113, North-Holland, Amsterdam, 1985. Zbl0584.46024MR0808961
- Colombeau J.-F., Meril A., 10.1006/jmaa.1994.1303, J. Math. Anal. Appl. 186 (1994), no. 2, 357–364. MR1292997DOI10.1006/jmaa.1994.1303
- Dapić N., Pilipović S., 10.1016/0019-3577(96)83722-0, Indag. Math. (N.S.) 7 (1996), no. 3, 293–309. MR1621385DOI10.1016/0019-3577(96)83722-0
- de Roever J.W., Damsma, M., 10.1016/0019-3577(91)90022-Y, Indag. Math. (N.S.) 2 (1991), no. 3, 341–358. MR1149687DOI10.1016/0019-3577(91)90022-Y
- Erlacher E., Grosser M., Inversion of a “discontinuous coordinate transformation” in general relativity, Applicable Analysis(to appear). MR2842608
- Grosser M., Farkas E., Kunzinger M., Steinbauer R., On the foundations of nonlinear generalized functions I and II, Mem. Amer. Math. Soc. 153 (2001), no. 729. MR1848157
- Grosser M., Kunzinger M., Oberguggenberger M., Steinbauer R., Geometric Theory of Generalized Functions with Applications to General Relativity, Kluwer, Dordrecht, 2001. Zbl0998.46015
- Grosser M., Kunzinger M., Steinbauer R., Vickers J.A., 10.1006/aima.2001.2018, Adv. Math. 166 (2002), no. 1, 50–72. Zbl0995.46054MR1882858DOI10.1006/aima.2001.2018
- Grosser M., Kunzinger M., Steinbauer R., Vickers J.A., A global theory of algebras of generalized functions II: tensor distributions, submitted, http://arxiv.org/abs/0902.1865.
- Jelinek J., An intrinsic definition of the Colombeau generalized functions, Comment. Math. Univ. Carolin. 45 (1999), no. 1, 71–95. Zbl1060.46513MR1715203
- Jelinek J., Colombeau product of currents, Comment. Math. Univ. Carolin. 46 (2005), no. 3, 437–462. Zbl1123.46025MR2174523
- Kriegl A., Michor P., The Convenient Setting of Global Analysis, Mathematical Surveys and Monographs, 53, American Mathematical Society, Providence, 1997. Zbl0889.58001MR1471480
- Kunzinger M., 10.1007/s00605-002-0488-x, Monatsh. Math. 137 (2002), 31–49. Zbl1014.46054MR1930994DOI10.1007/s00605-002-0488-x
- Kunzinger M., Steinbauer R., 10.1023/A:1014554315909, Acta Appl. Math. 71 (2002), no. 2, 179–206. Zbl1012.46048MR1914741DOI10.1023/A:1014554315909
- Kunzinger, M., Steinbauer, R., Vickers, J.A., Intrinsic characterization of manifold-valued generalized functions, Proc. London Math. Soc. 87 (2003), no. 2, 451–470. Zbl1042.46050MR1990935
- Kunzinger M., Steinbauer R., Vickers J.A., 10.1090/S0002-9947-09-04621-2, Trans. Amer. Math. Soc. 361 (2009), 5177–5192. Zbl1184.46070MR2515808DOI10.1090/S0002-9947-09-04621-2
- Marsden J.E., Generalized Hamiltonian mechanics: A mathematical exposition of non-smooth dynamical systems and classical Hamiltonian mechanics, Arch. Rational Mech. Anal. 28 (1967/1968), 323–361. Zbl0155.51302MR0224935
- Nedeljkov M., Pilipović S., Scarpalezos D., The Linear Theory of Colombeau Generalized Functions, Pitman Research Notes in Mathematics, 385, Longman, Harlow, 1998. MR1638310
- Nigsch E., Approximation properties of local smoothing kernels, Integral Transform. Spec. Funct.(to appear). MR2801281
- Oberguggenberger M., Multiplication of distributions and applications to partial differential equations, Pitman Research Notes in Mathematics Series, 259, Longman Scientific & Technical, Harlow, 1992. Zbl0818.46036MR1187755
- O'Neill B., Semi-Riemannian Geometry. With Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, New York, 1983. Zbl0531.53051MR0719023
- Parker P.E., 10.1063/1.524224, J. Math. Phys. 20 (1979), no. 7, 1423–1426. Zbl0442.53064MR0538717DOI10.1063/1.524224
- Steinbauer R., Vickers J.A., 10.1088/0264-9381/23/10/R01, Classical Quantum Gravity 23 (2006), no. 10, R91–R114. Zbl1096.83001MR2226026DOI10.1088/0264-9381/23/10/R01
- Vernaeve H., 10.1007/s00605-009-0152-9, Monatsh. Math. 162 (2011), 225–237. MR2769888DOI10.1007/s00605-009-0152-9
- Vickers J., Wilson J., A nonlinear theory of tensor distributions, ESI-Preprint 566 (http://www.esi.ac.at/ESI-Preprints.html), 1998.
- Vickers J.A., Wilson J.P., 10.1088/0264-9381/16/2/019, Classical Quantum Gravity 16 (1999), no. 2, 579–588. Zbl0933.83033MR1672476DOI10.1088/0264-9381/16/2/019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.