An intrinsic definition of the Colombeau generalized functions

Jiří Jelínek

Commentationes Mathematicae Universitatis Carolinae (1999)

  • Volume: 40, Issue: 1, page 71-95
  • ISSN: 0010-2628

Abstract

top
A slight modification of the definition of the Colombeau generalized functions allows to have a canonical embedding of the space of the distributions into the space of the generalized functions on a 𝒞 manifold. The previous attempt in [5] is corrected, several equivalent definitions are presented.

How to cite

top

Jelínek, Jiří. "An intrinsic definition of the Colombeau generalized functions." Commentationes Mathematicae Universitatis Carolinae 40.1 (1999): 71-95. <http://eudml.org/doc/248380>.

@article{Jelínek1999,
abstract = {A slight modification of the definition of the Colombeau generalized functions allows to have a canonical embedding of the space of the distributions into the space of the generalized functions on a $\mathcal \{C\}^\infty $ manifold. The previous attempt in [5] is corrected, several equivalent definitions are presented.},
author = {Jelínek, Jiří},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Colombeau generalized function; distribution; canonical embedding; manifold; Colombeau generalized function; distribution; canonical embedding; manifold},
language = {eng},
number = {1},
pages = {71-95},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {An intrinsic definition of the Colombeau generalized functions},
url = {http://eudml.org/doc/248380},
volume = {40},
year = {1999},
}

TY - JOUR
AU - Jelínek, Jiří
TI - An intrinsic definition of the Colombeau generalized functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 1
SP - 71
EP - 95
AB - A slight modification of the definition of the Colombeau generalized functions allows to have a canonical embedding of the space of the distributions into the space of the generalized functions on a $\mathcal {C}^\infty $ manifold. The previous attempt in [5] is corrected, several equivalent definitions are presented.
LA - eng
KW - Colombeau generalized function; distribution; canonical embedding; manifold; Colombeau generalized function; distribution; canonical embedding; manifold
UR - http://eudml.org/doc/248380
ER -

References

top
  1. Biagioni H.A., A Nonlinear Theory of Generalized Functions, Lecture Notes in Math. 1421, Springer-Verlag (1990). (1990) Zbl0694.46032MR1049623
  2. Colombeau J.F., Differential Calculus and Holomorphy, North Holland Math. Studies 64 (1982). (1982) Zbl0506.46001MR0671252
  3. Colombeau J.F., New Generalized Functions and Multiplication of Distributions, North Holland Math. Studies 84 (1984). (1984) Zbl0532.46019MR0738781
  4. Colombeau J.F., Elementary Introduction to New Generalized Functions, North Holland Math. Studies 113 (1985). (1985) Zbl0584.46024MR0808961
  5. Colombeau J.F., Meril A., Generalized functions and multiplication of distributions on 𝒞 manifolds, J. Math. Anal. Appl. 186 (1994), 357-364. (1994) MR1292997
  6. Dapić and Pilipović, Microlocal analysis of Colombeau's generalized functions on a manifold, Indag. Math. N.S. 7.3 (1996), 293-309. (1996) MR1621385
  7. Engelking R., Outline of General Topology, North-Holland Publishing Company, Amsterdam (1968), 388. (1968) Zbl0157.53001MR0230273
  8. Hörmander L., The Analysis of Linear Partial Differential Operators I, Distribution Theory and Fourier Analysis, (). 
  9. Egorov Yu.V., On the theory of generalized functions (in Russian), Russian Math. Surveys 45.5 (1990), 1-49. (1990) MR1084986
  10. Itano M., On fixation and reciprocal images of currents, J. Sci. Hiroshima Univ. A-I, 31.2 (1967). (1967) MR0231195
  11. Jelínek J., Characterization of the Colombeau product of distributions, Comment. Math. Univ. Carolinae 27.2 (1986). (1986) MR0857556
  12. Pietsch A., Nukleare Lokalkonvexe Räume, Akademie-Verlag, Berlin. Zbl0184.14602MR0181888
  13. de Rham G., Variétés Différentiables, Paris, Hermann (1955). (1955) Zbl0065.32401
  14. Robertson + Robertson, Topological Vector Spaces, Cambridge Univ. Press, Cambridge (1964). (1964) MR0162118
  15. Roever J.W., Damsma M., Colombeau algebras on a 𝒞 -manifold, Indag. Math. N.S. 2.3 (1991), 341-358. (1991) MR1149687
  16. Schwartz L., Théorie des Distributions, Paris, Hermann (1966). (1966) Zbl0149.09501MR0209834
  17. Yamamuro S., Differential Calculus in Topological Linear Spaces, Lecture Notes in Math. 374, Springer-Verlag (1974). (1974) Zbl0276.58001MR0488118

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.