Analysis of finite element methods on Bakhvalov-type meshes for linear convection-diffusion problems in 2D

Hans-Görg Roos; Martin Schopf

Applications of Mathematics (2012)

  • Volume: 57, Issue: 2, page 97-108
  • ISSN: 0862-7940

Abstract

top
So far optimal error estimates on Bakhvalov-type meshes are only known for finite difference and finite element methods solving linear convection-diffusion problems in the one-dimensional case. We prove (almost) optimal error estimates for problems with exponential boundary layers in two dimensions.

How to cite

top

Roos, Hans-Görg, and Schopf, Martin. "Analysis of finite element methods on Bakhvalov-type meshes for linear convection-diffusion problems in 2D." Applications of Mathematics 57.2 (2012): 97-108. <http://eudml.org/doc/247053>.

@article{Roos2012,
abstract = {So far optimal error estimates on Bakhvalov-type meshes are only known for finite difference and finite element methods solving linear convection-diffusion problems in the one-dimensional case. We prove (almost) optimal error estimates for problems with exponential boundary layers in two dimensions.},
author = {Roos, Hans-Görg, Schopf, Martin},
journal = {Applications of Mathematics},
keywords = {finite element method; singular perturbation; convection-diffusion problem; Bakhvalov-type meshes; layer-adapted meshes; optimal error estimates; exponential boundary layers; finite element method; singular perturbation; convection-diffusion problem; Bakhvalov-type mesh; layer-adapted mesh; optimal error estimates; exponential boundary layers},
language = {eng},
number = {2},
pages = {97-108},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Analysis of finite element methods on Bakhvalov-type meshes for linear convection-diffusion problems in 2D},
url = {http://eudml.org/doc/247053},
volume = {57},
year = {2012},
}

TY - JOUR
AU - Roos, Hans-Görg
AU - Schopf, Martin
TI - Analysis of finite element methods on Bakhvalov-type meshes for linear convection-diffusion problems in 2D
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 2
SP - 97
EP - 108
AB - So far optimal error estimates on Bakhvalov-type meshes are only known for finite difference and finite element methods solving linear convection-diffusion problems in the one-dimensional case. We prove (almost) optimal error estimates for problems with exponential boundary layers in two dimensions.
LA - eng
KW - finite element method; singular perturbation; convection-diffusion problem; Bakhvalov-type meshes; layer-adapted meshes; optimal error estimates; exponential boundary layers; finite element method; singular perturbation; convection-diffusion problem; Bakhvalov-type mesh; layer-adapted mesh; optimal error estimates; exponential boundary layers
UR - http://eudml.org/doc/247053
ER -

References

top
  1. Dobrowolski, M., Roos, H.-G., 10.4171/ZAA/801, Z. Anal. Anwend. 16 (1997), 1001-1012. (1997) Zbl0892.35014MR1615644DOI10.4171/ZAA/801
  2. Franz, S., Singularly perturbed problems with characteristic layers, PHD TU Dresden (2008). (2008) Zbl1302.35002
  3. Linß, T., 10.1093/imanum/20.4.621, IMA J. Numer. Anal. 20 (2000), 621-632. (2000) Zbl0966.65083MR1795300DOI10.1093/imanum/20.4.621
  4. Linß, T., 10.1002/1098-2426(200009)16:5<426::AID-NUM2>3.0.CO;2-R, Numer. Methods Partial Differential Equations 16 (2000), 426-440. (2000) MR1778398DOI10.1002/1098-2426(200009)16:5<426::AID-NUM2>3.0.CO;2-R
  5. Lin{ß}, T., Stynes, M., 10.1006/jmaa.2001.7550, J. Math. Anal. Appl. 261 (2001), 604-632. (2001) Zbl1200.35046MR1853059DOI10.1006/jmaa.2001.7550
  6. Linß, T., Layer-adapted Meshes for Reaction-convection-diffusion Problems. Lecture Notes in Mathematics, Vol. 1985, Springer Berlin (2010). (2010) MR2583792
  7. O'Riordan, E., Shiskin, G., 10.1016/j.cam.2006.06.002, J. Comput. Appl. Math. 206 (2007), 136-145. (2007) MR2333841DOI10.1016/j.cam.2006.06.002
  8. Roos, H.-G., Lin{ß}, T., 10.1007/s006070050049, Computing 63 (1999), 27-45. (1999) Zbl0931.65085MR1702159DOI10.1007/s006070050049
  9. Roos, H.-G., 10.1007/s10492-006-0005-y, Appl. Math. 51 (2006), 63-72. (2006) Zbl1164.65486MR2197323DOI10.1007/s10492-006-0005-y
  10. Roos, H.-G., Stynes, M., Tobiska, L., Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer Berlin (2008). (2008) Zbl1155.65087MR2454024
  11. Stynes, M., O'Riordan, E., 10.1006/jmaa.1997.5581, J. Math. Anal. Appl. 214 (1997), 36-54. (1997) Zbl0917.65088MR1645503DOI10.1006/jmaa.1997.5581
  12. Stynes, M., Tobiska, L., 10.1137/S0036142902404728, SIAM J. Numer.Anal. 41 (2003), 1620-1642. (2003) Zbl1055.65121MR2035000DOI10.1137/S0036142902404728

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.