Generalized minimizers of convex integral functionals, Bregman distance, Pythagorean identities
Kybernetika (2012)
- Volume: 48, Issue: 4, page 637-689
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topCsiszár, Imre, and Matúš, František. "Generalized minimizers of convex integral functionals, Bregman distance, Pythagorean identities." Kybernetika 48.4 (2012): 637-689. <http://eudml.org/doc/247058>.
@article{Csiszár2012,
abstract = {Integral functionals based on convex normal integrands are minimized subject to finitely many moment constraints. The integrands are finite on the positive and infinite on the negative numbers, strictly convex but not necessarily differentiable. The minimization is viewed as a primal problem and studied together with a dual one in the framework of convex duality. The effective domain of the value function is described by a conic core, a modification of the earlier concept of convex core. Minimizers and generalized minimizers are explicitly constructed from solutions of modified dual problems, not assuming the primal constraint qualification. A generalized Pythagorean identity is presented using Bregman distance and a correction term for lack of essential smoothness in integrands. Results are applied to minimization of Bregman distances. Existence of a generalized dual solution is established whenever the dual value is finite, assuming the dual constraint qualification. Examples of ‘irregular’ situations are included, pointing to the limitations of generality of certain key results.},
author = {Csiszár, Imre, Matúš, František},
journal = {Kybernetika},
keywords = {maximum entropy; moment constraint; generalized primal/dual solutions; normal integrand; minimizing sequence; convex duality; Bregman projection; conic core; generalized exponential family; inference principles; maximum entropy; moment constraint; generalized primal/dual solutions; normal integrand; minimizing sequence; convex duality; Bregman projection; conic core; generalized exponential family; inference principles},
language = {eng},
number = {4},
pages = {637-689},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Generalized minimizers of convex integral functionals, Bregman distance, Pythagorean identities},
url = {http://eudml.org/doc/247058},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Csiszár, Imre
AU - Matúš, František
TI - Generalized minimizers of convex integral functionals, Bregman distance, Pythagorean identities
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 4
SP - 637
EP - 689
AB - Integral functionals based on convex normal integrands are minimized subject to finitely many moment constraints. The integrands are finite on the positive and infinite on the negative numbers, strictly convex but not necessarily differentiable. The minimization is viewed as a primal problem and studied together with a dual one in the framework of convex duality. The effective domain of the value function is described by a conic core, a modification of the earlier concept of convex core. Minimizers and generalized minimizers are explicitly constructed from solutions of modified dual problems, not assuming the primal constraint qualification. A generalized Pythagorean identity is presented using Bregman distance and a correction term for lack of essential smoothness in integrands. Results are applied to minimization of Bregman distances. Existence of a generalized dual solution is established whenever the dual value is finite, assuming the dual constraint qualification. Examples of ‘irregular’ situations are included, pointing to the limitations of generality of certain key results.
LA - eng
KW - maximum entropy; moment constraint; generalized primal/dual solutions; normal integrand; minimizing sequence; convex duality; Bregman projection; conic core; generalized exponential family; inference principles; maximum entropy; moment constraint; generalized primal/dual solutions; normal integrand; minimizing sequence; convex duality; Bregman projection; conic core; generalized exponential family; inference principles
UR - http://eudml.org/doc/247058
ER -
References
top- S. M. Ali, S. D. Silvey, A general class of coefficients of divergence of one distribution from another., J. Roy. Statist. Soc. Ser. B 28 (1966) 131-142. Zbl0203.19902MR0196777
- S. Amari, H. Nagaoka, Methods of Information Geometry., Transl. Math. Monographs 191, Oxford Univ. Press, 2000. Zbl1146.62001MR1800071
- S. Amari, A. Cichocki, Information geometry of divergence functions., Bull. Polish Acad. Sci. 58 (2010) 183-194.
- O. Barndorff-Nielsen, Information and Exponential Families in Statistical Theory., Wiley, 1978. Zbl0387.62011MR0489333
- H. H. Bauschke, J. M. Borwein, Legendre functions and the method of random Bregman projections., J. Convex Anal. 4 (1997), 27-67. Zbl0894.49019MR1459881
- H. H. Bauschke, J. M. Borwein, P. L. Combettes, 10.1142/S0219199701000524, Comm. Contemp. Math. 3 (2001), 615-647. Zbl1032.49025MR1869107DOI10.1142/S0219199701000524
- A. Ben-Tal, A. Charnes, A dual optimization framework for some problems of information theory and statistics., Problems Control Inform. Theory 8 (1979), 387-401. Zbl0437.90078MR0553884
- J. M. Borwein, A. S. Lewis, 10.1137/0329017, SIAM J. Control Optim. 29 (1991), 325-338. Zbl0797.49030MR1092730DOI10.1137/0329017
- J. M. Borwein, A. S. Lewis, 10.1137/0801014, SIAM J. Optim. 1 (1991), 191-205. Zbl0756.41037MR1098426DOI10.1137/0801014
- J. M. Borwein, A. S. Lewis, 10.1137/0803012, SIAM J. Optim. 3 (1993), 248-267. MR1215444DOI10.1137/0803012
- J. M. Borwein, A. S. Lewis, D. Noll, 10.1287/moor.21.2.442, Math. Oper. Res. 21 (1996), 442-468. MR1397223DOI10.1287/moor.21.2.442
- L. M. Bregman, 10.1016/0041-5553(67)90040-7, USSR Comput. Math. and Math. Phys. 7 (1967), 200-217. Zbl0186.23807MR0215617DOI10.1016/0041-5553(67)90040-7
- M. Broniatowski, A. Keziou, Minimization of -divergences on sets of signed measures., Studia Sci. Math. Hungar. 43 (2006), 403-442. Zbl1121.28004MR2273419
- J. P. Burg, Maximum entropy spectral analysis., Paper presented at 37th Meeting of Soc. Explor. Geophysicists, Oklahoma City 1967.
- J. P. Burg, Maximum entropy spectral analysis., Ph.D. Thesis, Dept. Geophysics, Stanford Univ., Stanford 1975.
- Y. Censor, S. A. Zenios, Parallel Optimization., Oxford University Press, New York 1997. Zbl0945.90064MR1486040
- N. N. Chentsov, Statistical Decision Rules and Optimal Inference., Transl. Math. Monographs 53, American Math. Soc., Providence 1982. Russian original: Nauka, Moscow 1972. Zbl0484.62008MR0645898
- I. Csiszár, Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten., Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963), 85-108. Zbl0124.08703MR0164374
- I. Csiszár, Information-type measures of difference of probability distributions and indirect observations., Studia Sci. Math. Hungar. 2 (1967), 299-318. Zbl0157.25802MR0219345
- I. Csiszár, 10.1214/aop/1176996454, Ann. Probab. 3 (1975), 146-158. MR0365798DOI10.1214/aop/1176996454
- I. Csiszár, 10.1214/aop/1176993227, Ann. Probab. 12 (1984), 768-793. Zbl0544.60011MR0744233DOI10.1214/aop/1176993227
- I. Csiszár, 10.1214/aos/1176348385, Ann. Statist. 19 (1991), 2031-2066. Zbl0753.62003MR1135163DOI10.1214/aos/1176348385
- I. Csiszár, 10.1007/BF01874442, Acta Math. Hungar. 68 (1995), 1-2, 161-185. Zbl0837.62006MR1320794DOI10.1007/BF01874442
- I. Csiszár, F. Gamboa, E. Gassiat, 10.1109/18.796367, IEEE Trans. Inform. Theory 45 (1999), 2253-2270. Zbl0958.94002MR1725114DOI10.1109/18.796367
- I. Csiszár, F. Matúš, Convex cores of measures on ., Studia Sci. Math. Hungar. 38 (2001), 177-190. MR1877777
- I. Csiszár, F. Matúš, 10.1109/TIT.2003.810633, IEEE Trans. Inform. Theory 49 (2003), 1474-1490. Zbl1063.94016MR1984936DOI10.1109/TIT.2003.810633
- I. Csiszár, F. Matúš, Generalized maximum likelihood estimates for infinite dimensional exponential families., In: Proc. Prague Stochastics'06, Prague 2006, pp. 288-297.
- I. Csiszár, F. Matúš, 10.1007/s00440-007-0084-z, Probab. Theory Related Fields 141 (2008), 213-246. Zbl1133.62039MR2372970DOI10.1007/s00440-007-0084-z
- I. Csiszár, F. Matúš, On minimization of entropy functionals under moment constraints., In: Proc. ISIT 2008, Toronto, pp. 2101-2105.
- I. Csiszár, F. Matúš, On minimization of multivariate entropy functionals., In: Proc. ITW 2009, Volos, Greece, pp. 96-100.
- I. Csiszár, F. Matúš, Minimization of entropy functionals revisited., In: Proc. ISIT 2012, Cambridge, MA, pp. 150-154.
- D. Dacunha-Castelle, F. Gamboa, Maximum d'entropie et problème des moments., Ann. Inst. H. Poincaré Probab. Statist. 26 (1990), 567-596. Zbl0788.62007MR1080586
- A. P. Dawid, P. D. Grünwald, 10.1214/009053604000000553, Ann. Statist. 32 (2004), 1367-1433. Zbl1048.62008MR2089128DOI10.1214/009053604000000553
- S. Eguchi, Information geometry and statistical pattern recognition., Sugaku Expositions, Amer. Math. Soc. 19 (2006), 197-216. MR2279777
- B. A. Frigyik, S. Srivastava, M. R. Gupta, 10.1109/TIT.2008.929943, IEEE Trans. Inform. Theory 54 (2008), 5130-5139. MR2589887DOI10.1109/TIT.2008.929943
- F. Gamboa, E. Gassiat, 10.1214/aos/1034276632, Ann. Statist. 25 (1997), 1, 328-350. Zbl0871.62010MR1429928DOI10.1214/aos/1034276632
- E. T. Jaynes, Information theory and statistical mechanics., Physical Review Ser. II 106 (1957), 620-630. Zbl0084.43701MR0087305
- L. Jones, C. Byrne, 10.1109/18.50370, IEEE Trans. Inform. Theory 36 (1990), 23-30. MR1043277DOI10.1109/18.50370
- S. Kullback, Information Theory and Statistics., John Wiley and Sons, New York 1959. Zbl0897.62003MR0103557
- S. Kullback, R. A. Leibler, 10.1214/aoms/1177729694, Ann. Math. Statist. 22 (1951), 79-86. Zbl0042.38403MR0039968DOI10.1214/aoms/1177729694
- C. Léonard, 10.1023/A:1017919422086, Acta Math. Hungar. 93 (2001), 281-325. Zbl1052.49017MR1925356DOI10.1023/A:1017919422086
- C. Léonard, Minimizers of energy functionals under not very integrable constraints., J. Convex Anal. 10 (2003), 63-68. MR1999902
- C. Léonard, 10.1016/j.jmaa.2008.04.048, J. Math. Anal. Appl. 346 (2008), 183-204. Zbl1152.49039MR2428283DOI10.1016/j.jmaa.2008.04.048
- C. Léonard, 10.1051/ps/2009003, ESAIM: Probability and Statistics 14 (2010), 343-381. Zbl1220.60018MR2795471DOI10.1051/ps/2009003
- F. Liese, I. Vajda, Convex Statistical Distances., Teubner Texte zur Mathematik 95, Teubner Verlag, Leipzig 1986. Zbl0656.62004MR0926905
- N. Murata, T. Takenouchi, T. Kanamori, S. Eguchi, 10.1162/089976604323057452, Neural Computation 16 (2004), 1437-1481. Zbl1102.68489DOI10.1162/089976604323057452
- R. T. Rockafellar, 10.2140/pjm.1968.24.525, Pacific J. Math. 24 (1968), 525-539. Zbl0324.90061MR0236689DOI10.2140/pjm.1968.24.525
- R. T. Rockafellar, Convex integral functionals and duality., In: Contributions to Nonlinear Functional Analysis (E. H. Zarantonello, ed.), Academic Press, New York 1971, pp. 215-236. Zbl0326.49008MR0390870
- R. T. Rockafellar, Convex Analysis., Princeton University Press, Princeton 1970. Zbl1011.49013MR0274683
- R. T. Rockafellar, R. J.-B. Wets, Variational Analysis., Springer Verlag, Berlin - Heidelberg - New York 2004. Zbl0888.49001MR1491362
- M. Teboulle, I. Vajda, 10.1109/18.179378, IEEE Trans. Inform. Theory 39 (1993), 297-301. Zbl0765.94001MR1211512DOI10.1109/18.179378
- F. Topsoe, Information-theoretical optimization techniques., Kybernetika 15 (1979), 8-27. MR0529888
- I. Vajda, Theory of Statistical Inference and Information., Kluwer Academic Puplishers, Dordrecht 1989. Zbl0711.62002
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.