Entropic Projections and Dominating Points
ESAIM: Probability and Statistics (2010)
- Volume: 14, page 343-381
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- R. Azencott, Grandes déviations et applications, in École d'Eté de Probabilités de Saint-Flour VIII (1978).
- J.M. Borwein and A.S. Lewis, Strong rotundity and optimization. SIAM J. Optim.1 (1994) 146–158.
- C. Boucher, R.S. Ellis and B. Turkington, Spatializing random measures: doubly indexed processes and the large deviation principle. Ann. Probab.27 (1999) 297–324.
- I. Csiszár, I-divergence geometry of probability distributions and minimization problems. Ann. Probab.3 (1975) 146–158.
- I. Csiszár, Sanov property, generalized I-projection and a conditional limit theorem. Ann. Probab.12 (1984) 768–793.
- I. Csiszár, Generalized projections for non-negative functions. Acta Math. Hungar.68 (1995) 161–185.
- I. Csiszár, F. Gamboa and E. Gassiat, MEM pixel correlated solutions for generalized moment and interpolation problems. IEEE Trans. Inform. Theory45 (1999) 2253–2270.
- D. Dacunha-Castelle and F. Gamboa, Maximum d'entropie et problème des moments. Ann. Inst. H. Poincaré. Probab. Statist.26 (1990) 567–596.
- A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications. Second edition. Appl. Math. 38. Springer-Verlag (1998).
- U. Einmahl and J. Kuelbs, Dominating points and large deviations for random vectors. Probab. Theory Relat. Fields105 (1996) 529–543.
- R.S. Ellis, J. Gough and J.V. Puli, The large deviations principle for measures with random weights. Rev. Math. Phys.5 (1993) 659–692.
- F. Gamboa and E. Gassiat, Bayesian methods and maximum entropy for ill-posed inverse problems. Ann. Statist.25 (1997) 328–350.
- H. Gzyl, The Method of Maximum Entropy. World Scientific (1994).
- J. Kuelbs, Large deviation probabilities and dominating points for open convex sets: nonlogarithmic behavior. Ann. Probab.28 (2000) 1259–1279.
- C. Léonard, Large deviations for Poisson random measures and processes with independent increments. Stoch. Proc. Appl.85 (2000) 93–121.
- C. Léonard, Convex minimization problems with weak constraint qualifications. J. Convex Anal.17 (2010) 321–348.
- C. Léonard, Minimization of energy functionals applied to some inverse problems. J. Appl. Math. Optim.44 (2001) 273–297.
- C. Léonard, Minimizers of energy functionals under not very integrable constraints. J. Convex Anal.10 (2003) 63–88.
- C. Léonard, Minimization of entropy functionals. J. Math. Anal. Appl.346 (2008) 183–204.
- C. Léonard and J. Najim, An extension of Sanov's theorem: application to the Gibbs conditioning principle. Bernoulli8 (2002) 721–743.
- J. Najim, A Cramér type theorem for weighted random variables. Electron. J. Probab.7 (2002) 1–32.
- P. Ney, Dominating points and the asymptotics of large deviations for random walks on Rd. Ann. Probab.11 (1983) 158–167.
- P. Ney, Convexity and large deviations. Ann. Probab.12 (1984) 903–906.
- M.M. Rao and Z.D. Ren, Theory of Orlicz spaces, Pure Appl. Math. 146. Marcel Dekker, Inc. (1991).
- R.T. Rockafellar, Integrals which are convex functionals. Pacific J. Math.24 (1968) 525–539.
- R.T. Rockafellar, Conjugate Duality and Optimization, volume 16 of Regional Conf. Series in Applied Mathematics. SIAM, Philadelphia (1974).
- R.T. Rockafellar and R. Wets, Variational Analysis, in Grundlehren der Mathematischen Wissenschaften, volume 317. Springer (1998).
- A. Schied, Cramér's condition and Sanov's theorem. Statist. Probab. Lett.39 (1998) 55–60.
- C.R. Smith, G.J. Erickson and P.O. Neudorfer (Eds.). Maximum Entropy and Bayesian Methods, Proc. of 11th Int. Workshop on Maximum Entropy and Bayesian Methods of Statistical Analysis, Seattle, 1991. Kluwer.
- D.W. Stroock and O. Zeitouni, Microcanonical distributions, Gibbs states and the equivalence of ensembles, in Festchrift in Honour of F. Spitzer, edited by R. Durrett and H. Kesten. Birkhaüser (1991) 399–424.