Periodic solutions for second order Hamiltonian systems

Qiongfen Zhang; X. H. Tang

Applications of Mathematics (2012)

  • Volume: 57, Issue: 4, page 407-425
  • ISSN: 0862-7940

Abstract

top
By using the least action principle and minimax methods in critical point theory, some existence theorems for periodic solutions of second order Hamiltonian systems are obtained.

How to cite

top

Zhang, Qiongfen, and Tang, X. H.. "Periodic solutions for second order Hamiltonian systems." Applications of Mathematics 57.4 (2012): 407-425. <http://eudml.org/doc/247076>.

@article{Zhang2012,
abstract = {By using the least action principle and minimax methods in critical point theory, some existence theorems for periodic solutions of second order Hamiltonian systems are obtained.},
author = {Zhang, Qiongfen, Tang, X. H.},
journal = {Applications of Mathematics},
keywords = {periodic solutions; minimax methods; second order Hamiltonian systems; periodic solution; minimax method; second-order Hamiltonian system},
language = {eng},
number = {4},
pages = {407-425},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Periodic solutions for second order Hamiltonian systems},
url = {http://eudml.org/doc/247076},
volume = {57},
year = {2012},
}

TY - JOUR
AU - Zhang, Qiongfen
AU - Tang, X. H.
TI - Periodic solutions for second order Hamiltonian systems
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 4
SP - 407
EP - 425
AB - By using the least action principle and minimax methods in critical point theory, some existence theorems for periodic solutions of second order Hamiltonian systems are obtained.
LA - eng
KW - periodic solutions; minimax methods; second order Hamiltonian systems; periodic solution; minimax method; second-order Hamiltonian system
UR - http://eudml.org/doc/247076
ER -

References

top
  1. Berger, M. S., Schechter, M., 10.1016/0001-8708(77)90001-9, Adv. Math. 25 (1977), 97-132. (1977) Zbl0354.47025MR0500336DOI10.1016/0001-8708(77)90001-9
  2. Mawhin, J., Semi-coercive monotone variational problems, Bull. Cl. Sci., V. Sér., Acad. R. Belg. 73 (1987), 118-130. (1987) Zbl0647.49007MR0938142
  3. Mawhin, J., Willem, M., Critical Point Theory and Hamiltonian Systems, Springer New York (1989). (1989) Zbl0676.58017MR0982267
  4. Mawhin, J., Willem, M., 10.1016/S0294-1449(16)30376-6, Ann. Inst. Henri. Poincaré, Anal. Non Linéaire 3 (1986), 431-453. (1986) Zbl0678.35091MR0870864DOI10.1016/S0294-1449(16)30376-6
  5. Rabinowitz, P. H., 10.1002/cpa.3160330504, Commun. Pure Appl. Math. 33 (1980), 609-633. (1980) Zbl0425.34024MR0586414DOI10.1002/cpa.3160330504
  6. Rabinowitz, P. H., Minimax methods in critical point theory with applications to differential equations, In: CBMS Reg. Conf. Ser. Math., Vol. 65 Am. Math. Soc. Providence (1986). (1986) Zbl0609.58002MR0845785
  7. Tang, C. L., 10.1006/jmaa.1995.1044, J. Math. Anal. Appl. 189 (1995), 671-675. (1995) MR1312546DOI10.1006/jmaa.1995.1044
  8. Tang, C. L., 10.1006/jmaa.1996.0327, J. Math. Anal. Appl. 202 (1996), 465-469. (1996) DOI10.1006/jmaa.1996.0327
  9. Tang, C. L., 10.1090/S0002-9939-98-04706-6, Proc. Am. Math. Soc. 126 (1998), 3263-3270. (1998) MR1476396DOI10.1090/S0002-9939-98-04706-6
  10. Tang, C. L., Wu, X. P., 10.1006/jmaa.2000.7401, J. Math. Anal. Appl. 259 (2001), 386-397. (2001) Zbl0999.34039MR1842066DOI10.1006/jmaa.2000.7401
  11. Willem, M., Oscillations forcees de systémes hamiltoniens, In: Public. Semin. Analyse Non Linéaire Univ. Besancon (1981). (1981) Zbl0482.70020
  12. Wu, X., 10.1016/j.na.2004.05.020, Nonlinear Anal., Theory Methods Appl. 58 (2004), 899-907. (2004) Zbl1058.34053MR2086063DOI10.1016/j.na.2004.05.020
  13. Wu, X. P., Tang, C. L., 10.1006/jmaa.1999.6408, J. Math. Anal. Appl. 236 (1999), 227-235 1704579. (1999) MR1704579DOI10.1006/jmaa.1999.6408
  14. Zhao, F. K., Wu, X., 10.1016/j.jmaa.2004.01.041, J. Math. Anal. Appl. 296 (2004), 422-434. (2004) MR2075174DOI10.1016/j.jmaa.2004.01.041
  15. Zhao, F. K., Wu, X., Existence and multiplicity of periodic solutions for non-autonomous second-order systems with linear nonlinearity, Nonlinear Anal., Theory Methods Appl. 60 (2005), 325-335. (2005) MR2101882
  16. Tang, X. H., Meng, Q., Solutions of a second-order Hamiltonian system with periodic boundary conditions, Nonlinear Anal., Real World Appl. 11 (2010), 3722-3733. (2010) Zbl1223.34024MR2683825
  17. Wang, Z. Y., Zhang, J. H., 10.1016/j.na.2010.02.023, Nonlinear Anal., Theory Methods Appl. 72 (2010), 4480-4487. (2010) Zbl1206.34060MR2639196DOI10.1016/j.na.2010.02.023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.