Periodic solutions for second order Hamiltonian systems
Applications of Mathematics (2012)
- Volume: 57, Issue: 4, page 407-425
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topZhang, Qiongfen, and Tang, X. H.. "Periodic solutions for second order Hamiltonian systems." Applications of Mathematics 57.4 (2012): 407-425. <http://eudml.org/doc/247076>.
@article{Zhang2012,
abstract = {By using the least action principle and minimax methods in critical point theory, some existence theorems for periodic solutions of second order Hamiltonian systems are obtained.},
author = {Zhang, Qiongfen, Tang, X. H.},
journal = {Applications of Mathematics},
keywords = {periodic solutions; minimax methods; second order Hamiltonian systems; periodic solution; minimax method; second-order Hamiltonian system},
language = {eng},
number = {4},
pages = {407-425},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Periodic solutions for second order Hamiltonian systems},
url = {http://eudml.org/doc/247076},
volume = {57},
year = {2012},
}
TY - JOUR
AU - Zhang, Qiongfen
AU - Tang, X. H.
TI - Periodic solutions for second order Hamiltonian systems
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 4
SP - 407
EP - 425
AB - By using the least action principle and minimax methods in critical point theory, some existence theorems for periodic solutions of second order Hamiltonian systems are obtained.
LA - eng
KW - periodic solutions; minimax methods; second order Hamiltonian systems; periodic solution; minimax method; second-order Hamiltonian system
UR - http://eudml.org/doc/247076
ER -
References
top- Berger, M. S., Schechter, M., 10.1016/0001-8708(77)90001-9, Adv. Math. 25 (1977), 97-132. (1977) Zbl0354.47025MR0500336DOI10.1016/0001-8708(77)90001-9
- Mawhin, J., Semi-coercive monotone variational problems, Bull. Cl. Sci., V. Sér., Acad. R. Belg. 73 (1987), 118-130. (1987) Zbl0647.49007MR0938142
- Mawhin, J., Willem, M., Critical Point Theory and Hamiltonian Systems, Springer New York (1989). (1989) Zbl0676.58017MR0982267
- Mawhin, J., Willem, M., 10.1016/S0294-1449(16)30376-6, Ann. Inst. Henri. Poincaré, Anal. Non Linéaire 3 (1986), 431-453. (1986) Zbl0678.35091MR0870864DOI10.1016/S0294-1449(16)30376-6
- Rabinowitz, P. H., 10.1002/cpa.3160330504, Commun. Pure Appl. Math. 33 (1980), 609-633. (1980) Zbl0425.34024MR0586414DOI10.1002/cpa.3160330504
- Rabinowitz, P. H., Minimax methods in critical point theory with applications to differential equations, In: CBMS Reg. Conf. Ser. Math., Vol. 65 Am. Math. Soc. Providence (1986). (1986) Zbl0609.58002MR0845785
- Tang, C. L., 10.1006/jmaa.1995.1044, J. Math. Anal. Appl. 189 (1995), 671-675. (1995) MR1312546DOI10.1006/jmaa.1995.1044
- Tang, C. L., 10.1006/jmaa.1996.0327, J. Math. Anal. Appl. 202 (1996), 465-469. (1996) DOI10.1006/jmaa.1996.0327
- Tang, C. L., 10.1090/S0002-9939-98-04706-6, Proc. Am. Math. Soc. 126 (1998), 3263-3270. (1998) MR1476396DOI10.1090/S0002-9939-98-04706-6
- Tang, C. L., Wu, X. P., 10.1006/jmaa.2000.7401, J. Math. Anal. Appl. 259 (2001), 386-397. (2001) Zbl0999.34039MR1842066DOI10.1006/jmaa.2000.7401
- Willem, M., Oscillations forcees de systémes hamiltoniens, In: Public. Semin. Analyse Non Linéaire Univ. Besancon (1981). (1981) Zbl0482.70020
- Wu, X., 10.1016/j.na.2004.05.020, Nonlinear Anal., Theory Methods Appl. 58 (2004), 899-907. (2004) Zbl1058.34053MR2086063DOI10.1016/j.na.2004.05.020
- Wu, X. P., Tang, C. L., 10.1006/jmaa.1999.6408, J. Math. Anal. Appl. 236 (1999), 227-235 1704579. (1999) MR1704579DOI10.1006/jmaa.1999.6408
- Zhao, F. K., Wu, X., 10.1016/j.jmaa.2004.01.041, J. Math. Anal. Appl. 296 (2004), 422-434. (2004) MR2075174DOI10.1016/j.jmaa.2004.01.041
- Zhao, F. K., Wu, X., Existence and multiplicity of periodic solutions for non-autonomous second-order systems with linear nonlinearity, Nonlinear Anal., Theory Methods Appl. 60 (2005), 325-335. (2005) MR2101882
- Tang, X. H., Meng, Q., Solutions of a second-order Hamiltonian system with periodic boundary conditions, Nonlinear Anal., Real World Appl. 11 (2010), 3722-3733. (2010) Zbl1223.34024MR2683825
- Wang, Z. Y., Zhang, J. H., 10.1016/j.na.2010.02.023, Nonlinear Anal., Theory Methods Appl. 72 (2010), 4480-4487. (2010) Zbl1206.34060MR2639196DOI10.1016/j.na.2010.02.023
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.