On linear operators strongly preserving invariants of Boolean matrices
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 1, page 169-186
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, Yizhi, and Zhao, Xian Zhong. "On linear operators strongly preserving invariants of Boolean matrices." Czechoslovak Mathematical Journal 62.1 (2012): 169-186. <http://eudml.org/doc/247108>.
@article{Chen2012,
abstract = {Let $\mathbb \{B\}_\{k\}$ be the general Boolean algebra and $T$ a linear operator on $M_\{m,n\}(\mathbb \{B\}_\{k\})$. If for any $A$ in $M_\{m,n\}(\mathbb \{B\}_\{k\})$ ($ M_\{n\}(\mathbb \{B\}_\{k\})$, respectively), $A$ is regular (invertible, respectively) if and only if $T(A)$ is regular (invertible, respectively), then $T$ is said to strongly preserve regular (invertible, respectively) matrices. In this paper, we will give complete characterizations of the linear operators that strongly preserve regular (invertible, respectively) matrices over $\mathbb \{B\}_\{k\}$. Meanwhile, noting that a general Boolean algebra $\mathbb \{B\}_\{k\}$ is isomorphic to a finite direct product of binary Boolean algebras, we also give some characterizations of linear operators that strongly preserve regular (invertible, respectively) matrices over $\mathbb \{B\}_\{k\}$ from another point of view.},
author = {Chen, Yizhi, Zhao, Xian Zhong},
journal = {Czechoslovak Mathematical Journal},
keywords = {linear operator; invariant; regular matrix; invertible matrix; general Boolean algebra; linear operator; invariant; regular matrix; invertible matrix; general Boolean algebra; linear preserver problem},
language = {eng},
number = {1},
pages = {169-186},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On linear operators strongly preserving invariants of Boolean matrices},
url = {http://eudml.org/doc/247108},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Chen, Yizhi
AU - Zhao, Xian Zhong
TI - On linear operators strongly preserving invariants of Boolean matrices
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 169
EP - 186
AB - Let $\mathbb {B}_{k}$ be the general Boolean algebra and $T$ a linear operator on $M_{m,n}(\mathbb {B}_{k})$. If for any $A$ in $M_{m,n}(\mathbb {B}_{k})$ ($ M_{n}(\mathbb {B}_{k})$, respectively), $A$ is regular (invertible, respectively) if and only if $T(A)$ is regular (invertible, respectively), then $T$ is said to strongly preserve regular (invertible, respectively) matrices. In this paper, we will give complete characterizations of the linear operators that strongly preserve regular (invertible, respectively) matrices over $\mathbb {B}_{k}$. Meanwhile, noting that a general Boolean algebra $\mathbb {B}_{k}$ is isomorphic to a finite direct product of binary Boolean algebras, we also give some characterizations of linear operators that strongly preserve regular (invertible, respectively) matrices over $\mathbb {B}_{k}$ from another point of view.
LA - eng
KW - linear operator; invariant; regular matrix; invertible matrix; general Boolean algebra; linear operator; invariant; regular matrix; invertible matrix; general Boolean algebra; linear preserver problem
UR - http://eudml.org/doc/247108
ER -
References
top- Bapat, R. B., Structure of a nonnegative regular matrix and its generalized inverses, Linear Algebra Appl. 268 (1998), 31-39. (1998) Zbl0885.15015MR1480331
- Beasley, L. B., Guterman, A. E., Lee, S.-G., Song, S.-Z., Linear transformations preserving the Grassmannian over , Linear Algebra Appl. 393 (2004), 39-46. (2004) MR2098603
- Beasley, L. B., Guterman, A. E., The characterization of operators preserving primitivity for matrix -tuples, Linear Algebra Appl. 430 (2009), 1762-1777. (2009) Zbl1168.15010MR2494662
- Beasley, L. B., Lee, S. G., Linear operations strongly preserving -potent matrices over semirings, Linear Algebra Appl. 162-164 (1992), 589-599. (1992) MR1148418
- Beasley, L. B., Pullman, N. J., 10.1016/0024-3795(84)90158-7, Linear Algebra Appl. 59 (1984), 55-77. (1984) Zbl0536.20044MR0743045DOI10.1016/0024-3795(84)90158-7
- Beasley, L. B., Pullman, N. J., 10.1016/0024-3795(88)90132-2, Linear Algebra Appl. 99 (1988), 199-216. (1988) Zbl0635.15003MR0925157DOI10.1016/0024-3795(88)90132-2
- Beasley, L. B., Pullman, N. J., 10.1016/0024-3795(86)90240-5, Linear Algebra Appl. 73 (1986), 197-211. (1986) Zbl0578.15002MR0818901DOI10.1016/0024-3795(86)90240-5
- Beasley, L. B., Pullman, N. J., Linear operators strongly preserving idempotent matrices over semirings, Linear Algebra Appl. 160 (1992), 217-229. (1992) Zbl0744.15010MR1137853
- Dénes, J., Transformations and transformation semigroups I. Seminar Report, Magyar Tud. Akad., Mat. Fiz. Tud. Oszt. Közl. 19 (1969), 247-269 Hungarian. (1969) MR0274612
- Golan, J. S., Semirings and Their Applications, Kluwer Dordrecht (1999). (1999) Zbl0947.16034MR1746739
- Kim, K. H., Boolean Matrix Theory and Applications, Pure Appl. Math., Vol. 70 Marcel Dekker New York (1982). (1982) Zbl0495.15003MR0655414
- Kang, K.-T., Song, S.-Z., Jun, Y.-B., Linear operators that strongly preserve regularity of fuzzy matrices, Math. Commun. 15 (2010), 243-254. (2010) Zbl1200.15013MR2668997
- Kirkland, S., Pullman, N. J., 10.1080/03081089308818200, Linear Multilinear Algebra 33 (1993), 295-300. (1993) MR1334678DOI10.1080/03081089308818200
- Li, H. H., Tan, Y. J., Tang, J. M., Linear operators that strongly preserve invertible matrices over antinegative semirings, J. Univ. Sci. Technol. China 37 (2007), 238-242. (2007) Zbl1174.15304MR2330655
- Luce, R. D., 10.1090/S0002-9939-1952-0050559-1, Proc. Am. Math. Soc. 3 (1952), 382-388. (1952) Zbl0048.02302MR0050559DOI10.1090/S0002-9939-1952-0050559-1
- Orel, M., 10.4134/JKMS.2010.47.4.805, J. Korean Math. Soc. 47 (2010), 805-818. (2010) Zbl1208.15023MR2667773DOI10.4134/JKMS.2010.47.4.805
- Plemmons, R. J., 10.1137/0120046, SIAM J. Appl. Math. 20 (1971), 426-433. (1971) Zbl0227.05013MR0286806DOI10.1137/0120046
- Pshenitsyna, O. A., 10.1070/RM2009v064n01ABEH004604, Russ. Math. Surv. 64 (2009), 162-164. (2009) Zbl1176.15037MR2503107DOI10.1070/RM2009v064n01ABEH004604
- Rao, P. S. S. N. V. P., Rao, K. P. S. B., 10.1016/0024-3795(75)90054-3, Linear Algebra Appl. 11 (1975), 135-153. (1975) Zbl0322.15011MR0376706DOI10.1016/0024-3795(75)90054-3
- Rutherford, D. E., 10.1017/S2040618500034705, Proc. Glasg. Math. Assoc. 6 (1963), 49-53. (1963) Zbl0114.01701MR0148585DOI10.1017/S2040618500034705
- Song, S.-Z., Beasley, L. B., Cheon, G. S., Jun, Y.-B., 10.4134/JKMS.2004.41.2.397, J. Korean Math. Soc. 41 (2004), 397-406. (2004) Zbl1055.15004MR2036618DOI10.4134/JKMS.2004.41.2.397
- Song, S.-Z., Kang, K.-T., Jun, Y.-B., 10.4134/JKMS.2006.43.3.539, J. Korean Math. Soc. 43 (2006), 539-552. (2006) Zbl1186.15023MR2218232DOI10.4134/JKMS.2006.43.3.539
- Song, S.-Z., Kang, K.-T., Beasley, L. B., Sze, N.-S., Regular matrices and their strong preservers over semirings, Linear Algebra Appl. 429 (2008), 209-223. (2008) Zbl1152.15004MR2419150
- Song, S.-Z., Kang, K.-T., Beasley, L. B., 10.4134/JKMS.2007.44.1.169, J. Korean Math. Soc. 44 (2007), 169-178. (2007) Zbl1123.15002MR2283465DOI10.4134/JKMS.2007.44.1.169
- Song, S.-Z., Kang, K.-T., Kang, M.-H., 10.4134/BKMS.2009.46.2.373, Bull. Korean Math. Soc. 46 (2009), 373-385. (2009) Zbl1167.15004MR2502801DOI10.4134/BKMS.2009.46.2.373
- Song, S.-Z., Lee, S.-G., Column ranks and their preservers of general Boolean matrices, J. Korean Math. Soc. 32 (1995), 531-540. (1995) Zbl0837.15001MR1355672
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.