On linear operators strongly preserving invariants of Boolean matrices

Yizhi Chen; Xian Zhong Zhao

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 1, page 169-186
  • ISSN: 0011-4642

Abstract

top
Let 𝔹 k be the general Boolean algebra and T a linear operator on M m , n ( 𝔹 k ) . If for any A in M m , n ( 𝔹 k ) ( M n ( 𝔹 k ) , respectively), A is regular (invertible, respectively) if and only if T ( A ) is regular (invertible, respectively), then T is said to strongly preserve regular (invertible, respectively) matrices. In this paper, we will give complete characterizations of the linear operators that strongly preserve regular (invertible, respectively) matrices over 𝔹 k . Meanwhile, noting that a general Boolean algebra 𝔹 k is isomorphic to a finite direct product of binary Boolean algebras, we also give some characterizations of linear operators that strongly preserve regular (invertible, respectively) matrices over 𝔹 k from another point of view.

How to cite

top

Chen, Yizhi, and Zhao, Xian Zhong. "On linear operators strongly preserving invariants of Boolean matrices." Czechoslovak Mathematical Journal 62.1 (2012): 169-186. <http://eudml.org/doc/247108>.

@article{Chen2012,
abstract = {Let $\mathbb \{B\}_\{k\}$ be the general Boolean algebra and $T$ a linear operator on $M_\{m,n\}(\mathbb \{B\}_\{k\})$. If for any $A$ in $M_\{m,n\}(\mathbb \{B\}_\{k\})$ ($ M_\{n\}(\mathbb \{B\}_\{k\})$, respectively), $A$ is regular (invertible, respectively) if and only if $T(A)$ is regular (invertible, respectively), then $T$ is said to strongly preserve regular (invertible, respectively) matrices. In this paper, we will give complete characterizations of the linear operators that strongly preserve regular (invertible, respectively) matrices over $\mathbb \{B\}_\{k\}$. Meanwhile, noting that a general Boolean algebra $\mathbb \{B\}_\{k\}$ is isomorphic to a finite direct product of binary Boolean algebras, we also give some characterizations of linear operators that strongly preserve regular (invertible, respectively) matrices over $\mathbb \{B\}_\{k\}$ from another point of view.},
author = {Chen, Yizhi, Zhao, Xian Zhong},
journal = {Czechoslovak Mathematical Journal},
keywords = {linear operator; invariant; regular matrix; invertible matrix; general Boolean algebra; linear operator; invariant; regular matrix; invertible matrix; general Boolean algebra; linear preserver problem},
language = {eng},
number = {1},
pages = {169-186},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On linear operators strongly preserving invariants of Boolean matrices},
url = {http://eudml.org/doc/247108},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Chen, Yizhi
AU - Zhao, Xian Zhong
TI - On linear operators strongly preserving invariants of Boolean matrices
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 169
EP - 186
AB - Let $\mathbb {B}_{k}$ be the general Boolean algebra and $T$ a linear operator on $M_{m,n}(\mathbb {B}_{k})$. If for any $A$ in $M_{m,n}(\mathbb {B}_{k})$ ($ M_{n}(\mathbb {B}_{k})$, respectively), $A$ is regular (invertible, respectively) if and only if $T(A)$ is regular (invertible, respectively), then $T$ is said to strongly preserve regular (invertible, respectively) matrices. In this paper, we will give complete characterizations of the linear operators that strongly preserve regular (invertible, respectively) matrices over $\mathbb {B}_{k}$. Meanwhile, noting that a general Boolean algebra $\mathbb {B}_{k}$ is isomorphic to a finite direct product of binary Boolean algebras, we also give some characterizations of linear operators that strongly preserve regular (invertible, respectively) matrices over $\mathbb {B}_{k}$ from another point of view.
LA - eng
KW - linear operator; invariant; regular matrix; invertible matrix; general Boolean algebra; linear operator; invariant; regular matrix; invertible matrix; general Boolean algebra; linear preserver problem
UR - http://eudml.org/doc/247108
ER -

References

top
  1. Bapat, R. B., Structure of a nonnegative regular matrix and its generalized inverses, Linear Algebra Appl. 268 (1998), 31-39. (1998) Zbl0885.15015MR1480331
  2. Beasley, L. B., Guterman, A. E., Lee, S.-G., Song, S.-Z., Linear transformations preserving the Grassmannian over M n ( Z + ) , Linear Algebra Appl. 393 (2004), 39-46. (2004) MR2098603
  3. Beasley, L. B., Guterman, A. E., The characterization of operators preserving primitivity for matrix k -tuples, Linear Algebra Appl. 430 (2009), 1762-1777. (2009) Zbl1168.15010MR2494662
  4. Beasley, L. B., Lee, S. G., Linear operations strongly preserving r -potent matrices over semirings, Linear Algebra Appl. 162-164 (1992), 589-599. (1992) MR1148418
  5. Beasley, L. B., Pullman, N. J., 10.1016/0024-3795(84)90158-7, Linear Algebra Appl. 59 (1984), 55-77. (1984) Zbl0536.20044MR0743045DOI10.1016/0024-3795(84)90158-7
  6. Beasley, L. B., Pullman, N. J., 10.1016/0024-3795(88)90132-2, Linear Algebra Appl. 99 (1988), 199-216. (1988) Zbl0635.15003MR0925157DOI10.1016/0024-3795(88)90132-2
  7. Beasley, L. B., Pullman, N. J., 10.1016/0024-3795(86)90240-5, Linear Algebra Appl. 73 (1986), 197-211. (1986) Zbl0578.15002MR0818901DOI10.1016/0024-3795(86)90240-5
  8. Beasley, L. B., Pullman, N. J., Linear operators strongly preserving idempotent matrices over semirings, Linear Algebra Appl. 160 (1992), 217-229. (1992) Zbl0744.15010MR1137853
  9. Dénes, J., Transformations and transformation semigroups I. Seminar Report, Magyar Tud. Akad., Mat. Fiz. Tud. Oszt. Közl. 19 (1969), 247-269 Hungarian. (1969) MR0274612
  10. Golan, J. S., Semirings and Their Applications, Kluwer Dordrecht (1999). (1999) Zbl0947.16034MR1746739
  11. Kim, K. H., Boolean Matrix Theory and Applications, Pure Appl. Math., Vol. 70 Marcel Dekker New York (1982). (1982) Zbl0495.15003MR0655414
  12. Kang, K.-T., Song, S.-Z., Jun, Y.-B., Linear operators that strongly preserve regularity of fuzzy matrices, Math. Commun. 15 (2010), 243-254. (2010) Zbl1200.15013MR2668997
  13. Kirkland, S., Pullman, N. J., 10.1080/03081089308818200, Linear Multilinear Algebra 33 (1993), 295-300. (1993) MR1334678DOI10.1080/03081089308818200
  14. Li, H. H., Tan, Y. J., Tang, J. M., Linear operators that strongly preserve invertible matrices over antinegative semirings, J. Univ. Sci. Technol. China 37 (2007), 238-242. (2007) Zbl1174.15304MR2330655
  15. Luce, R. D., 10.1090/S0002-9939-1952-0050559-1, Proc. Am. Math. Soc. 3 (1952), 382-388. (1952) Zbl0048.02302MR0050559DOI10.1090/S0002-9939-1952-0050559-1
  16. Orel, M., 10.4134/JKMS.2010.47.4.805, J. Korean Math. Soc. 47 (2010), 805-818. (2010) Zbl1208.15023MR2667773DOI10.4134/JKMS.2010.47.4.805
  17. Plemmons, R. J., 10.1137/0120046, SIAM J. Appl. Math. 20 (1971), 426-433. (1971) Zbl0227.05013MR0286806DOI10.1137/0120046
  18. Pshenitsyna, O. A., 10.1070/RM2009v064n01ABEH004604, Russ. Math. Surv. 64 (2009), 162-164. (2009) Zbl1176.15037MR2503107DOI10.1070/RM2009v064n01ABEH004604
  19. Rao, P. S. S. N. V. P., Rao, K. P. S. B., 10.1016/0024-3795(75)90054-3, Linear Algebra Appl. 11 (1975), 135-153. (1975) Zbl0322.15011MR0376706DOI10.1016/0024-3795(75)90054-3
  20. Rutherford, D. E., 10.1017/S2040618500034705, Proc. Glasg. Math. Assoc. 6 (1963), 49-53. (1963) Zbl0114.01701MR0148585DOI10.1017/S2040618500034705
  21. Song, S.-Z., Beasley, L. B., Cheon, G. S., Jun, Y.-B., 10.4134/JKMS.2004.41.2.397, J. Korean Math. Soc. 41 (2004), 397-406. (2004) Zbl1055.15004MR2036618DOI10.4134/JKMS.2004.41.2.397
  22. Song, S.-Z., Kang, K.-T., Jun, Y.-B., 10.4134/JKMS.2006.43.3.539, J. Korean Math. Soc. 43 (2006), 539-552. (2006) Zbl1186.15023MR2218232DOI10.4134/JKMS.2006.43.3.539
  23. Song, S.-Z., Kang, K.-T., Beasley, L. B., Sze, N.-S., Regular matrices and their strong preservers over semirings, Linear Algebra Appl. 429 (2008), 209-223. (2008) Zbl1152.15004MR2419150
  24. Song, S.-Z., Kang, K.-T., Beasley, L. B., 10.4134/JKMS.2007.44.1.169, J. Korean Math. Soc. 44 (2007), 169-178. (2007) Zbl1123.15002MR2283465DOI10.4134/JKMS.2007.44.1.169
  25. Song, S.-Z., Kang, K.-T., Kang, M.-H., 10.4134/BKMS.2009.46.2.373, Bull. Korean Math. Soc. 46 (2009), 373-385. (2009) Zbl1167.15004MR2502801DOI10.4134/BKMS.2009.46.2.373
  26. Song, S.-Z., Lee, S.-G., Column ranks and their preservers of general Boolean matrices, J. Korean Math. Soc. 32 (1995), 531-540. (1995) Zbl0837.15001MR1355672

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.