Ultimate boundedness of some third order ordinary differential equations

Anthony Uyi Afuwape; Mathew Omonigho Omeike

Mathematica Bohemica (2012)

  • Volume: 137, Issue: 3, page 355-364
  • ISSN: 0862-7959

Abstract

top
We prove the ultimate boundedness of solutions of some third order nonlinear ordinary differential equations using the Lyapunov method. The results obtained generalize earlier results of Ezeilo, Tejumola, Reissig, Tunç and others. The Lyapunov function used does not involve the use of signum functions as used by others.

How to cite

top

Afuwape, Anthony Uyi, and Omeike, Mathew Omonigho. "Ultimate boundedness of some third order ordinary differential equations." Mathematica Bohemica 137.3 (2012): 355-364. <http://eudml.org/doc/247137>.

@article{Afuwape2012,
abstract = {We prove the ultimate boundedness of solutions of some third order nonlinear ordinary differential equations using the Lyapunov method. The results obtained generalize earlier results of Ezeilo, Tejumola, Reissig, Tunç and others. The Lyapunov function used does not involve the use of signum functions as used by others.},
author = {Afuwape, Anthony Uyi, Omeike, Mathew Omonigho},
journal = {Mathematica Bohemica},
keywords = {ultimate boundedness; complete Lyapunov function; differential equation of third-order; ultimate boundedness; complete Lyapunov function; third-order differential equation},
language = {eng},
number = {3},
pages = {355-364},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ultimate boundedness of some third order ordinary differential equations},
url = {http://eudml.org/doc/247137},
volume = {137},
year = {2012},
}

TY - JOUR
AU - Afuwape, Anthony Uyi
AU - Omeike, Mathew Omonigho
TI - Ultimate boundedness of some third order ordinary differential equations
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 3
SP - 355
EP - 364
AB - We prove the ultimate boundedness of solutions of some third order nonlinear ordinary differential equations using the Lyapunov method. The results obtained generalize earlier results of Ezeilo, Tejumola, Reissig, Tunç and others. The Lyapunov function used does not involve the use of signum functions as used by others.
LA - eng
KW - ultimate boundedness; complete Lyapunov function; differential equation of third-order; ultimate boundedness; complete Lyapunov function; third-order differential equation
UR - http://eudml.org/doc/247137
ER -

References

top
  1. Ademola, T. A., Ogundiran, M. O., Arawomo, P. O, Adesina, O. A, 10.1016/j.amc.2010.04.022, Appl. Math. Comput. 216 (2010), 3044-3049. (2010) Zbl1201.34055MR2653118DOI10.1016/j.amc.2010.04.022
  2. Afuwape, A. U., Frequency-domain criteria for dissipativity of some third order differential equations, An. Stiint. Univ. Al. I. Cuza Iasi, n. Ser., Sect. Ia 24 (1978), 271-275. (1978) Zbl0405.34053MR0533755
  3. Afuwape, A. U., 10.1524/anly.1981.1.3.211, Analysis 1 (1981), 211-216. (1981) Zbl0488.34043MR0660717DOI10.1524/anly.1981.1.3.211
  4. Afuwape, A. U., Omeike, M. O., Further ultimate boundedness of solutions of some system of third order nonlinear ordinary differential equations, Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 43 (2004), 7-20. (2004) MR2124598
  5. Afuwape, A. U., Omeike, M. O., Convergence of solutions of certain third order systems of nonlinear ordinary differential equations, J. Nigerian Math. Soc. 25 (2006), 1-12. (2006) MR2376821
  6. Afuwape, A. U., Omeike, M. O., Convergence of solutions of certain non-homogeneous third order ordinary differential equations, Kragujevac J. Math. 31 (2008), 5-16. (2008) Zbl1199.34246MR2478598
  7. Bereketoglu, H., Gyori, I., On the boundedness of the solutions of a third-order nonlinear differential equation, Dynam. Systems Appl. 6 (1997), 263-270. (1997) MR1461442
  8. Chukwu, E. N., 10.1007/BF02417013, Ann. Mat. Pur. Appl. 104 (1975), 123-149. (1975) Zbl0319.34027MR0377180DOI10.1007/BF02417013
  9. Ezeilo, J. O. C., 10.1112/jlms/s1-38.1.11, J. Lond. Math. Soc. 38 (1963), 11-16. (1963) Zbl0116.06902MR0166450DOI10.1112/jlms/s1-38.1.11
  10. Ezeilo, J. O. C., Some results for the solutions of a certain system of differential equations, J. Math. Anal. Appl. 6 (1963), 389-393. (1963) Zbl0116.29405MR0153926
  11. Ezeilo, J. O. C., A generalization of a boundedness theorem for a certain third order differential equation, Proc. Cambridge Philos. Soc. 63 (1967), 735-742. (1967) MR0213657
  12. Ezeilo, J. O. C., New properties of the equation x ' ' ' + a x ' ' + b x ' + h ( x ) = p ( t , x , x ' , x ' ' ) for certain special values of the incrementary ratio y - 1 { h ( x + y ) - h ( x ) } , Equations differentielles et functionalles non-lineares, Hermann Publishing, Paris P. Janssons, J. Mawhin, N. Rouche (1973), 447-462. (1973) MR0430413
  13. Ezeilo, J. O. C., 10.1016/0022-247X(73)90215-1, J. Math. Anal. Appl. 41 (1973), 411-419. (1973) Zbl0253.34016MR0316821DOI10.1016/0022-247X(73)90215-1
  14. Ezeilo, J. O. C., A further result on the existence of periodic solutions of the equation x . . . + Ψ ( x ˙ ) x ¨ + φ ( x ) x ˙ + v ( x , x ˙ , x ¨ ) = p ( t ) with a bound ν , Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 55 (1978), 51-57. (1978) MR0571030
  15. Haddad, W. A., Chellaboina, V. S., Nonlinear Dynamical Systems and Control---A Lyapunov-Based Approach, Princeton University Press, Princeton (2008). (2008) Zbl1142.34001MR2381711
  16. Hara, T., 10.1016/0022-247X(81)90122-0, J. Math. Anal. Appl. 80 (1981), 533-544. (1981) MR0614848DOI10.1016/0022-247X(81)90122-0
  17. Qian, C., 10.1016/S0022-247X(03)00302-0, J. Math. Anal. Appl. 284 (2003), 191-205. (2003) MR1996127DOI10.1016/S0022-247X(03)00302-0
  18. Reisssig, R., 10.1002/mana.19660320109, Math. Nachr. 32 (1966), 83-88. (1966) MR0216096DOI10.1002/mana.19660320109
  19. Reisssig, R., Sansone, G., Conti, R., Nonlinear Differential Equations of Higher Order, Noordhoff, Groningen (1974). (1974) 
  20. Swick, K. E., Boundedness and stability for a nonlinear third order differential equation, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 56 (1974), 859-865. (1974) Zbl0326.34062MR0399597
  21. Tejumola, H. O., 10.1007/BF02411167, Ann. Mat. Pura Appl., IV Ser. 83 (1969), 195-212. (1969) MR0262597DOI10.1007/BF02411167
  22. Tunç, Cemil, Boundedness of solutions of a third order nonlinear differential equation, J. Inequal. Pure Appl. Math. 6 (2005), Article 3, 6 pp. (electronic). (2005) Zbl1082.34514MR2122950
  23. Yoshizawa, T., Stability Theory by Lyapunov's Second Method, Mathematical Society of Japan, Tokyo (1966). (1966) MR0208086

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.