A further result on the existence of periodic solutions of the equation with a bounded
- Volume: 65, Issue: 1-2, page 51-57
- ISSN: 0392-7881
Access Full Article
topAbstract
topHow to cite
topEzeilo, James O.C.. "A further result on the existence of periodic solutions of the equation $\bar{x} + \psi(\dot{x}) \ddot{x} + \phi(x) \dot{x} + \theta(t,x,\dot{x},\ddot{x}) = p(t)$ with a bounded $\theta$." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 65.1-2 (1978): 51-57. <http://eudml.org/doc/290042>.
@article{Ezeilo1978,
	author = {Ezeilo, James O.C.},
	journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
	language = {eng},
	month = {8},
	number = {1-2},
	pages = {51-57},
	publisher = {Accademia Nazionale dei Lincei},
	title = {A further result on the existence of periodic solutions of the equation $\bar\{x\} + \psi(\dot\{x\}) \ddot\{x\} + \phi(x) \dot\{x\} + \theta(t,x,\dot\{x\},\ddot\{x\}) = p(t)$ with a bounded $\theta$},
	url = {http://eudml.org/doc/290042},
	volume = {65},
	year = {1978},
}
TY  - JOUR
AU  - Ezeilo, James O.C.
TI  - A further result on the existence of periodic solutions of the equation $\bar{x} + \psi(\dot{x}) \ddot{x} + \phi(x) \dot{x} + \theta(t,x,\dot{x},\ddot{x}) = p(t)$ with a bounded $\theta$
JO  - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA  - 1978/8//
PB  - Accademia Nazionale dei Lincei
VL  - 65
IS  - 1-2
SP  - 51
EP  - 57
LA  - eng
UR  - http://eudml.org/doc/290042
ER  - 
References
top- REISSIG, R. (1972) - «Ann. Mat. Pura Appl.», 92, 199-209. MR316828DOI10.1007/BF02417947
- GÜSSEFELDT, G. (1971) - «Math. Nachr.», 48, 141-151. MR291566DOI10.1002/mana.19710480111
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
  
 