Induced differential forms on manifolds of functions
Archivum Mathematicum (2011)
- Volume: 047, Issue: 3, page 201-215
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topVizman, Cornelia. "Induced differential forms on manifolds of functions." Archivum Mathematicum 047.3 (2011): 201-215. <http://eudml.org/doc/247143>.
@article{Vizman2011,
abstract = {Differential forms on the Fréchet manifold $\mathcal \{F\}(S,M)$ of smooth functions on a compact $k$-dimensional manifold $S$ can be obtained in a natural way from pairs of differential forms on $M$ and $S$ by the hat pairing. Special cases are the transgression map $\Omega ^p(M)\rightarrow \Omega ^\{p-k\}(\mathcal \{F\}(S,M))$ (hat pairing with a constant function) and the bar map $\Omega ^p(M)\rightarrow \Omega ^p(\mathcal \{F\}(S,M))$ (hat pairing with a volume form). We develop a hat calculus similar to the tilda calculus for non-linear Grassmannians [6].},
author = {Vizman, Cornelia},
journal = {Archivum Mathematicum},
keywords = {manifold of functions; fiber integral; diffeomorphism group; manifold of functions; fiber integral; diffeomorphism group},
language = {eng},
number = {3},
pages = {201-215},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Induced differential forms on manifolds of functions},
url = {http://eudml.org/doc/247143},
volume = {047},
year = {2011},
}
TY - JOUR
AU - Vizman, Cornelia
TI - Induced differential forms on manifolds of functions
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 3
SP - 201
EP - 215
AB - Differential forms on the Fréchet manifold $\mathcal {F}(S,M)$ of smooth functions on a compact $k$-dimensional manifold $S$ can be obtained in a natural way from pairs of differential forms on $M$ and $S$ by the hat pairing. Special cases are the transgression map $\Omega ^p(M)\rightarrow \Omega ^{p-k}(\mathcal {F}(S,M))$ (hat pairing with a constant function) and the bar map $\Omega ^p(M)\rightarrow \Omega ^p(\mathcal {F}(S,M))$ (hat pairing with a volume form). We develop a hat calculus similar to the tilda calculus for non-linear Grassmannians [6].
LA - eng
KW - manifold of functions; fiber integral; diffeomorphism group; manifold of functions; fiber integral; diffeomorphism group
UR - http://eudml.org/doc/247143
ER -
References
top- Alekseev, A., Strobl, T., Current algebras and differential geometry, J. High Energy Phys. 03 (2005), 14. (2005) MR2151966
- Bonelli, G., Zabzine, M., 10.1088/1126-6708/2005/09/015, J. High Energy Phys. 09 (2005), 15. (2005) MR2171351DOI10.1088/1126-6708/2005/09/015
- Brylinski, J.–L., Loop spaces, characteristic classes and geometric quantization, vol. 107, Progr. Math., Birkhäuser, 1993. (1993) Zbl0823.55002MR1197353
- Gay–Balmaz, F., Vizman, C., 10.1007/s10455-011-9267-z, Ann. Global Anal. Geom. (2011). (2011) MR2860394DOI10.1007/s10455-011-9267-z
- Greub, W., Halperin, S., Vanstone, R., Connections, curvature, and cohomology. Vol. I: De Rham cohomology of manifolds and vector bundles, Pure and Applied Mathematics, vol. 47, Academic Press, New York–London, 1972. (1972) Zbl0322.58001MR0336650
- Haller, S., Vizman, C., 10.1007/s00208-004-0536-z, Math. Ann. 329 (2004), 771–785. (2004) MR2076685DOI10.1007/s00208-004-0536-z
- Hirsch, M. W., Differential topology, vol. 33, Springer, 1976, Grad. Texts in Math. (1976) Zbl0356.57001MR0448362
- Ismagilov, R. S., Representations of infinite–dimensional groups, vol. 152, Ams. Math. Soc., 1996, Translations of Mathematical Monographs. (1996) Zbl0856.22001MR1393939
- Ismagilov, R. S., Losik, M., Michor, P. W., A 2–cocycle on a group of symplectomorphisms, Moscow Math. J. 6 (2006), 307–315. (2006) MR2270616
- Kriegl, A., Michor, P. W., The convenient setting of global analysis, vol. 53, Math. Surveys Monogr., 1997. (1997) Zbl0889.58001MR1471480
- Marsden, J. E., Ratiu, T., Introduction to Mechanics and Symmetry, 2nd ed., Springer, 1999. (1999) Zbl0933.70003MR1723696
- Marsden, J. E., Weinstein, A., 10.1016/0167-2789(83)90134-3, Phys. D 7 (1983), 305–323. (1983) Zbl0576.58008MR0719058DOI10.1016/0167-2789(83)90134-3
- Michor, P. W., Manifolds of differentiable mappings, vol. 3, Shiva Math. Series, Shiva Publishing Ltd., Nantwich, 1980. (1980) Zbl0433.58001MR0583436
- Roger, C., 10.1016/0034-4877(96)89288-3, Rep. Math. Phys. 35 (1995), 225–266. (1995) Zbl0892.17018MR1377323DOI10.1016/0034-4877(96)89288-3
- Vizman, C., Lichnerowicz cocycles and central Lie group extensions, An. Univ. Vest Timis., Ser. Mat.–Inform. 48 (1–2) (2010), 285–297. (2010) Zbl1224.58009MR2849342
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.