Induced differential forms on manifolds of functions

Cornelia Vizman

Archivum Mathematicum (2011)

  • Volume: 047, Issue: 3, page 201-215
  • ISSN: 0044-8753

Abstract

top
Differential forms on the Fréchet manifold ( S , M ) of smooth functions on a compact k -dimensional manifold S can be obtained in a natural way from pairs of differential forms on M and S by the hat pairing. Special cases are the transgression map Ω p ( M ) Ω p - k ( ( S , M ) ) (hat pairing with a constant function) and the bar map Ω p ( M ) Ω p ( ( S , M ) ) (hat pairing with a volume form). We develop a hat calculus similar to the tilda calculus for non-linear Grassmannians [6].

How to cite

top

Vizman, Cornelia. "Induced differential forms on manifolds of functions." Archivum Mathematicum 047.3 (2011): 201-215. <http://eudml.org/doc/247143>.

@article{Vizman2011,
abstract = {Differential forms on the Fréchet manifold $\mathcal \{F\}(S,M)$ of smooth functions on a compact $k$-dimensional manifold $S$ can be obtained in a natural way from pairs of differential forms on $M$ and $S$ by the hat pairing. Special cases are the transgression map $\Omega ^p(M)\rightarrow \Omega ^\{p-k\}(\mathcal \{F\}(S,M))$ (hat pairing with a constant function) and the bar map $\Omega ^p(M)\rightarrow \Omega ^p(\mathcal \{F\}(S,M))$ (hat pairing with a volume form). We develop a hat calculus similar to the tilda calculus for non-linear Grassmannians [6].},
author = {Vizman, Cornelia},
journal = {Archivum Mathematicum},
keywords = {manifold of functions; fiber integral; diffeomorphism group; manifold of functions; fiber integral; diffeomorphism group},
language = {eng},
number = {3},
pages = {201-215},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Induced differential forms on manifolds of functions},
url = {http://eudml.org/doc/247143},
volume = {047},
year = {2011},
}

TY - JOUR
AU - Vizman, Cornelia
TI - Induced differential forms on manifolds of functions
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 3
SP - 201
EP - 215
AB - Differential forms on the Fréchet manifold $\mathcal {F}(S,M)$ of smooth functions on a compact $k$-dimensional manifold $S$ can be obtained in a natural way from pairs of differential forms on $M$ and $S$ by the hat pairing. Special cases are the transgression map $\Omega ^p(M)\rightarrow \Omega ^{p-k}(\mathcal {F}(S,M))$ (hat pairing with a constant function) and the bar map $\Omega ^p(M)\rightarrow \Omega ^p(\mathcal {F}(S,M))$ (hat pairing with a volume form). We develop a hat calculus similar to the tilda calculus for non-linear Grassmannians [6].
LA - eng
KW - manifold of functions; fiber integral; diffeomorphism group; manifold of functions; fiber integral; diffeomorphism group
UR - http://eudml.org/doc/247143
ER -

References

top
  1. Alekseev, A., Strobl, T., Current algebras and differential geometry, J. High Energy Phys. 03 (2005), 14. (2005) MR2151966
  2. Bonelli, G., Zabzine, M., 10.1088/1126-6708/2005/09/015, J. High Energy Phys. 09 (2005), 15. (2005) MR2171351DOI10.1088/1126-6708/2005/09/015
  3. Brylinski, J.–L., Loop spaces, characteristic classes and geometric quantization, vol. 107, Progr. Math., Birkhäuser, 1993. (1993) Zbl0823.55002MR1197353
  4. Gay–Balmaz, F., Vizman, C., 10.1007/s10455-011-9267-z, Ann. Global Anal. Geom. (2011). (2011) MR2860394DOI10.1007/s10455-011-9267-z
  5. Greub, W., Halperin, S., Vanstone, R., Connections, curvature, and cohomology. Vol. I: De Rham cohomology of manifolds and vector bundles, Pure and Applied Mathematics, vol. 47, Academic Press, New York–London, 1972. (1972) Zbl0322.58001MR0336650
  6. Haller, S., Vizman, C., 10.1007/s00208-004-0536-z, Math. Ann. 329 (2004), 771–785. (2004) MR2076685DOI10.1007/s00208-004-0536-z
  7. Hirsch, M. W., Differential topology, vol. 33, Springer, 1976, Grad. Texts in Math. (1976) Zbl0356.57001MR0448362
  8. Ismagilov, R. S., Representations of infinite–dimensional groups, vol. 152, Ams. Math. Soc., 1996, Translations of Mathematical Monographs. (1996) Zbl0856.22001MR1393939
  9. Ismagilov, R. S., Losik, M., Michor, P. W., A 2–cocycle on a group of symplectomorphisms, Moscow Math. J. 6 (2006), 307–315. (2006) MR2270616
  10. Kriegl, A., Michor, P. W., The convenient setting of global analysis, vol. 53, Math. Surveys Monogr., 1997. (1997) Zbl0889.58001MR1471480
  11. Marsden, J. E., Ratiu, T., Introduction to Mechanics and Symmetry, 2nd ed., Springer, 1999. (1999) Zbl0933.70003MR1723696
  12. Marsden, J. E., Weinstein, A., 10.1016/0167-2789(83)90134-3, Phys. D 7 (1983), 305–323. (1983) Zbl0576.58008MR0719058DOI10.1016/0167-2789(83)90134-3
  13. Michor, P. W., Manifolds of differentiable mappings, vol. 3, Shiva Math. Series, Shiva Publishing Ltd., Nantwich, 1980. (1980) Zbl0433.58001MR0583436
  14. Roger, C., 10.1016/0034-4877(96)89288-3, Rep. Math. Phys. 35 (1995), 225–266. (1995) Zbl0892.17018MR1377323DOI10.1016/0034-4877(96)89288-3
  15. Vizman, C., Lichnerowicz cocycles and central Lie group extensions, An. Univ. Vest Timis., Ser. Mat.–Inform. 48 (1–2) (2010), 285–297. (2010) Zbl1224.58009MR2849342

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.