On nonuniform dichotomy for stochastic skew-evolution semiflows in Hilbert spaces
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 4, page 879-887
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topStoica, Diana, and Megan, Mihail. "On nonuniform dichotomy for stochastic skew-evolution semiflows in Hilbert spaces." Czechoslovak Mathematical Journal 62.4 (2012): 879-887. <http://eudml.org/doc/247145>.
@article{Stoica2012,
abstract = {In this paper we study a general concept of nonuniform exponential dichotomy in mean square for stochastic skew-evolution semiflows in Hilbert spaces. We obtain a variant for the stochastic case of some well-known results, of the deterministic case, due to R. Datko: Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal., 3(1972), 428–445. Our approach is based on the extension of some techniques used in the deterministic case for the study of asymptotic behavior of skew-evolution semiflows in Banach spaces.},
author = {Stoica, Diana, Megan, Mihail},
journal = {Czechoslovak Mathematical Journal},
keywords = {stochastic skew-evolution semiflow; nonuniform exponential dichotomy in mean square; stochastic skew-evolution semiflow; nonuniform exponential dichotomy; mean square},
language = {eng},
number = {4},
pages = {879-887},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On nonuniform dichotomy for stochastic skew-evolution semiflows in Hilbert spaces},
url = {http://eudml.org/doc/247145},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Stoica, Diana
AU - Megan, Mihail
TI - On nonuniform dichotomy for stochastic skew-evolution semiflows in Hilbert spaces
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 4
SP - 879
EP - 887
AB - In this paper we study a general concept of nonuniform exponential dichotomy in mean square for stochastic skew-evolution semiflows in Hilbert spaces. We obtain a variant for the stochastic case of some well-known results, of the deterministic case, due to R. Datko: Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal., 3(1972), 428–445. Our approach is based on the extension of some techniques used in the deterministic case for the study of asymptotic behavior of skew-evolution semiflows in Banach spaces.
LA - eng
KW - stochastic skew-evolution semiflow; nonuniform exponential dichotomy in mean square; stochastic skew-evolution semiflow; nonuniform exponential dichotomy; mean square
UR - http://eudml.org/doc/247145
ER -
References
top- Arnold, L., Stochastic Differential Equations: Theory and Applications, A Wiley-Interscience Publication. New York etc.: John Wiley & Sons (1974). (1974) Zbl0278.60039MR0443083
- Ateiwi, A. M., 10.18514/MMN.2002.46, Miskolc Math. Notes 3 (2002), 3-12 (2002) MR1921482DOI10.18514/MMN.2002.46
- Bensoussan, A., Flandoli, F., 10.1080/17442509508833981, Stochastics and Stochastics Reports 53 (1995), 13-39. (1995) Zbl0854.60059MR1380488DOI10.1080/17442509508833981
- Buse, C., Barbu, D., The Lyapunov equations and nonuniform exponential stability, Stud. Cerc. Mat. 49 (1997), 25-31. (1997) Zbl0893.93031MR1671501
- Caraballo, T., Duan, J., Lu, K., Schmalfuss, B., 10.1515/ans-2010-0102, Adv. Nonlinear Stud. 10 (2010), 23-52. (2010) Zbl1209.37094MR2574373DOI10.1515/ans-2010-0102
- Prato, G. Da, Ichikawa, A., 10.1016/0167-6911(87)90023-5, Systems Control Lett. 9 (1987), 165-172. (1987) Zbl0678.93051MR0906236DOI10.1016/0167-6911(87)90023-5
- Prato, G. Da, Zabczyk, J., Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and Its Applications. 44 Cambridge etc. Cambridge University Press (1992). (1992) Zbl0761.60052MR1207136
- Datko, R., 10.1137/0503042, SIAM J. Math. Anal. 3 (1972), 428-445. (1972) Zbl0241.34071MR0320465DOI10.1137/0503042
- Flandoli, F., 10.1214/aop/1039639354, Ann. Probab. 24 (1996), 547-558. (1996) Zbl0870.60056MR1404520DOI10.1214/aop/1039639354
- Lemle, L. D., Wu, L., 10.1007/s00233-010-9285-3, Semigroup Forum 82 (2011), 485-496. (2011) Zbl1227.47026MR2796039DOI10.1007/s00233-010-9285-3
- Lupa., N., Megan, M., Popa, I. L., 10.1016/j.na.2010.06.017, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 2445-2450. (2010) Zbl1218.47065MR2674082DOI10.1016/j.na.2010.06.017
- Megan, M., Sasu, A. L., Sasu, B., Nonuniform exponential unstability of evolution operators in Banach spaces, Glas. Mat., III. Ser. 36 (2001), 287-295. (2001) Zbl1008.34053MR1884449
- Mohammed, S. - E. A., Zhang, T., Zhao, H., The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations, Mem. Am. Math. Soc. 196 (2008), 1-105. (2008) Zbl1169.60014MR2459571
- Skorohod, A. V., Random Linear Operators, Transl. from the Russian, Mathematics and Its Applications. Soviet Series., D. Reidel Publishing Company, Dordrecht, Boston, Lancaster (1984). (1984) MR0733994
- Stoica, C., Megan, M., Nonuniform behaviors for skew-evolution semiflows in Banach spaces, Operator theory live. Proceedings of the 22nd international conference on operator theory, Timişoara, Romania, July 3-8, 2008. Bucharest: The Theta Foundation. Theta Series in Advanced Mathematics 12 (2010), 203-211. (2010) MR2731875
- Stoica, D., 10.1016/j.spa.2010.05.016, Stochastic Process. Appl. 12 (2010), 1920-1928. (2010) Zbl1201.60060MR2673981DOI10.1016/j.spa.2010.05.016
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.