On nonuniform dichotomy for stochastic skew-evolution semiflows in Hilbert spaces

Diana Stoica; Mihail Megan

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 4, page 879-887
  • ISSN: 0011-4642

Abstract

top
In this paper we study a general concept of nonuniform exponential dichotomy in mean square for stochastic skew-evolution semiflows in Hilbert spaces. We obtain a variant for the stochastic case of some well-known results, of the deterministic case, due to R. Datko: Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal., 3(1972), 428–445. Our approach is based on the extension of some techniques used in the deterministic case for the study of asymptotic behavior of skew-evolution semiflows in Banach spaces.

How to cite

top

Stoica, Diana, and Megan, Mihail. "On nonuniform dichotomy for stochastic skew-evolution semiflows in Hilbert spaces." Czechoslovak Mathematical Journal 62.4 (2012): 879-887. <http://eudml.org/doc/247145>.

@article{Stoica2012,
abstract = {In this paper we study a general concept of nonuniform exponential dichotomy in mean square for stochastic skew-evolution semiflows in Hilbert spaces. We obtain a variant for the stochastic case of some well-known results, of the deterministic case, due to R. Datko: Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal., 3(1972), 428–445. Our approach is based on the extension of some techniques used in the deterministic case for the study of asymptotic behavior of skew-evolution semiflows in Banach spaces.},
author = {Stoica, Diana, Megan, Mihail},
journal = {Czechoslovak Mathematical Journal},
keywords = {stochastic skew-evolution semiflow; nonuniform exponential dichotomy in mean square; stochastic skew-evolution semiflow; nonuniform exponential dichotomy; mean square},
language = {eng},
number = {4},
pages = {879-887},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On nonuniform dichotomy for stochastic skew-evolution semiflows in Hilbert spaces},
url = {http://eudml.org/doc/247145},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Stoica, Diana
AU - Megan, Mihail
TI - On nonuniform dichotomy for stochastic skew-evolution semiflows in Hilbert spaces
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 4
SP - 879
EP - 887
AB - In this paper we study a general concept of nonuniform exponential dichotomy in mean square for stochastic skew-evolution semiflows in Hilbert spaces. We obtain a variant for the stochastic case of some well-known results, of the deterministic case, due to R. Datko: Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal., 3(1972), 428–445. Our approach is based on the extension of some techniques used in the deterministic case for the study of asymptotic behavior of skew-evolution semiflows in Banach spaces.
LA - eng
KW - stochastic skew-evolution semiflow; nonuniform exponential dichotomy in mean square; stochastic skew-evolution semiflow; nonuniform exponential dichotomy; mean square
UR - http://eudml.org/doc/247145
ER -

References

top
  1. Arnold, L., Stochastic Differential Equations: Theory and Applications, A Wiley-Interscience Publication. New York etc.: John Wiley & Sons (1974). (1974) Zbl0278.60039MR0443083
  2. Ateiwi, A. M., 10.18514/MMN.2002.46, Miskolc Math. Notes 3 (2002), 3-12 (2002) MR1921482DOI10.18514/MMN.2002.46
  3. Bensoussan, A., Flandoli, F., 10.1080/17442509508833981, Stochastics and Stochastics Reports 53 (1995), 13-39. (1995) Zbl0854.60059MR1380488DOI10.1080/17442509508833981
  4. Buse, C., Barbu, D., The Lyapunov equations and nonuniform exponential stability, Stud. Cerc. Mat. 49 (1997), 25-31. (1997) Zbl0893.93031MR1671501
  5. Caraballo, T., Duan, J., Lu, K., Schmalfuss, B., 10.1515/ans-2010-0102, Adv. Nonlinear Stud. 10 (2010), 23-52. (2010) Zbl1209.37094MR2574373DOI10.1515/ans-2010-0102
  6. Prato, G. Da, Ichikawa, A., 10.1016/0167-6911(87)90023-5, Systems Control Lett. 9 (1987), 165-172. (1987) Zbl0678.93051MR0906236DOI10.1016/0167-6911(87)90023-5
  7. Prato, G. Da, Zabczyk, J., Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and Its Applications. 44 Cambridge etc. Cambridge University Press (1992). (1992) Zbl0761.60052MR1207136
  8. Datko, R., 10.1137/0503042, SIAM J. Math. Anal. 3 (1972), 428-445. (1972) Zbl0241.34071MR0320465DOI10.1137/0503042
  9. Flandoli, F., 10.1214/aop/1039639354, Ann. Probab. 24 (1996), 547-558. (1996) Zbl0870.60056MR1404520DOI10.1214/aop/1039639354
  10. Lemle, L. D., Wu, L., 10.1007/s00233-010-9285-3, Semigroup Forum 82 (2011), 485-496. (2011) Zbl1227.47026MR2796039DOI10.1007/s00233-010-9285-3
  11. Lupa., N., Megan, M., Popa, I. L., 10.1016/j.na.2010.06.017, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 2445-2450. (2010) Zbl1218.47065MR2674082DOI10.1016/j.na.2010.06.017
  12. Megan, M., Sasu, A. L., Sasu, B., Nonuniform exponential unstability of evolution operators in Banach spaces, Glas. Mat., III. Ser. 36 (2001), 287-295. (2001) Zbl1008.34053MR1884449
  13. Mohammed, S. - E. A., Zhang, T., Zhao, H., The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations, Mem. Am. Math. Soc. 196 (2008), 1-105. (2008) Zbl1169.60014MR2459571
  14. Skorohod, A. V., Random Linear Operators, Transl. from the Russian, Mathematics and Its Applications. Soviet Series., D. Reidel Publishing Company, Dordrecht, Boston, Lancaster (1984). (1984) MR0733994
  15. Stoica, C., Megan, M., Nonuniform behaviors for skew-evolution semiflows in Banach spaces, Operator theory live. Proceedings of the 22nd international conference on operator theory, Timişoara, Romania, July 3-8, 2008. Bucharest: The Theta Foundation. Theta Series in Advanced Mathematics 12 (2010), 203-211. (2010) MR2731875
  16. Stoica, D., 10.1016/j.spa.2010.05.016, Stochastic Process. Appl. 12 (2010), 1920-1928. (2010) Zbl1201.60060MR2673981DOI10.1016/j.spa.2010.05.016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.