Page 1 Next

Displaying 1 – 20 of 80

Showing per page

A mixed active and passive GLR test for a fault tolerant control system

Hicham Jamouli, Mohamed Amine El Hail, Dominique Sauter (2012)

International Journal of Applied Mathematics and Computer Science

This paper presents an adaptive Generalized Likelihood Ratio (GLR) test for multiple Faults Detection and Isolation (FDI) in stochastic linear dynamic systems. Based on the work of Willsky and Jones (1976), we propose a modified generalized likelihood ratio test, allowing detection, isolation and estimation of multiple sequential faults. Our contribution aims to maximise the good decision rate of fault detection using another updating strategy. This is based on a reference model updated on-line...

Almost sure properties of controlled diffusions and worst case properties of deterministic systems

Martino Bardi, Annalisa Cesaroni (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We compare a general controlled diffusion process with a deterministic system where a second controller drives the disturbance against the first controller. We show that the two models are equivalent with respect to two properties: the viability (or controlled invariance, or weak invariance) of closed smooth sets, and the existence of a smooth control Lyapunov function ensuring the stabilizability of the system at an equilibrium.

An averaging principle for stochastic evolution equations. II.

Bohdan Maslowski, Jan Seidler, Ivo Vrkoč (1991)

Mathematica Bohemica

In the present paper integral continuity theorems for solutions of stochastic evolution equations of parabolic type on unbounded time intervals are established. For this purpose, the asymptotic stability of stochastic partial differential equations is investigated, the results obtained being of independent interest. Stochastic evolution equations are treated as equations in Hilbert spaces within the framework of the semigroup approach.

Attainability analysis in the problem of stochastic equilibria synthesis for nonlinear discrete systems

Irina Bashkirtseva, Lev Ryashko (2013)

International Journal of Applied Mathematics and Computer Science

A nonlinear discrete-time control system forced by stochastic disturbances is considered. We study the problem of synthesis of the regulator which stabilizes an equilibrium of the deterministic system and provides required scattering of random states near this equilibrium for the corresponding stochastic system. Our approach is based on the stochastic sensitivity functions technique. The necessary and important part of the examined control problem is an analysis of attainability. For 2D systems,...

Constrained robust adaptive stabilization for a class of lower triangular systems with unknown control direction

Jianglin Lan, Weijie Sun, Yunjian Peng (2014)


This paper studies the constrained robust adaptive stabilization problem for a class of lower triangular systems with unknown control direction. A robust adaptive feedback control law for the systems is proposed by incorporating the technique of Barrier Lyapunov Function with Nussbaum gain. Such a controlled system arises from the study of the constrained robust output regulation problem for a class of output feedback systems with the unknown control direction and a nonlinear exosystem. An application...

Continuity of solutions of Riccati equations for the discrete-time JLQP

Adam Czornik, Andrzej Świerniak (2002)

International Journal of Applied Mathematics and Computer Science

The continuity of the solutions of difference and algebraic coupled Riccati equations for the discrete-time Markovian jump linear quadratic control problem as a function of coefficients is verified. The line of reasoning goes through the use of the minimum property formulated analogously to the one for coupled continuous Riccati equations presented by Wonham and a set of comparison theorems.

Continuous feedback stabilization for a class of affine stochastic nonlinear systems

Mohamed Oumoun, Lahcen Maniar, Abdelghafour Atlas (2020)


We investigate the state feedback stabilization, in the sense of weak solution, of nonlinear stochastic systems when the drift is quadratic in the control and the diffusion term is affine in the control. Based on the generalised stochastic Lyapunov theorem, we derive the necessary conditions and the sufficient conditions, respectively, for the global asymptotic stabilization in probability by a continuous feedback explicitly computed. The interest of this work is that the existing control methods...

Control of a class of chaotic systems by a stochastic delay method

Lan Zhang, Cheng Jian Zhang, Dongming Zhao (2010)


A delay stochastic method is introduced to control a certain class of chaotic systems. With the Lyapunov method, a suitable kind of controllers with multiplicative noise is designed to stabilize the chaotic state to the equilibrium point. The method is simple and can be put into practice. Numerical simulations are provided to illustrate the effectiveness of the proposed controllable conditions.

Currently displaying 1 – 20 of 80

Page 1 Next