An elementary proof of a congruence by Skula and Granville
Archivum Mathematicum (2012)
- Volume: 048, Issue: 2, page 113-120
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topMeštrović, Romeo. "An elementary proof of a congruence by Skula and Granville." Archivum Mathematicum 048.2 (2012): 113-120. <http://eudml.org/doc/247159>.
@article{Meštrović2012,
abstract = {Let $p\ge 5$ be a prime, and let $q_p(2):=(2^\{p-1\}-1)/p$ be the Fermat quotient of $p$ to base $2$. The following curious congruence was conjectured by L. Skula and proved by A. Granville
\[ q\_p(2)^2\equiv -\sum \_\{k=1\}^\{p-1\}\frac\{2^k\}\{k^2\}\quad (\operatorname\{mod\} p)\,. \]
In this note we establish the above congruence by entirely elementary number theory arguments.},
author = {Meštrović, Romeo},
journal = {Archivum Mathematicum},
keywords = {congruence; Fermat quotient; harmonic numbers; congruence; Fermat quotient; harmonic numbers},
language = {eng},
number = {2},
pages = {113-120},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {An elementary proof of a congruence by Skula and Granville},
url = {http://eudml.org/doc/247159},
volume = {048},
year = {2012},
}
TY - JOUR
AU - Meštrović, Romeo
TI - An elementary proof of a congruence by Skula and Granville
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 2
SP - 113
EP - 120
AB - Let $p\ge 5$ be a prime, and let $q_p(2):=(2^{p-1}-1)/p$ be the Fermat quotient of $p$ to base $2$. The following curious congruence was conjectured by L. Skula and proved by A. Granville
\[ q_p(2)^2\equiv -\sum _{k=1}^{p-1}\frac{2^k}{k^2}\quad (\operatorname{mod} p)\,. \]
In this note we establish the above congruence by entirely elementary number theory arguments.
LA - eng
KW - congruence; Fermat quotient; harmonic numbers; congruence; Fermat quotient; harmonic numbers
UR - http://eudml.org/doc/247159
ER -
References
top- Agoh, T., Dilcher, K., Skula, L., 10.1006/jnth.1997.2162, J. Number Theory 66 (1997), 29–50. (1997) Zbl0884.11003MR1467188DOI10.1006/jnth.1997.2162
- Cao, H. Q., Pan, H., 10.1016/j.jnt.2006.02.004, J. Number Theory 121 (2006), 224–233. (2006) MR2274904DOI10.1016/j.jnt.2006.02.004
- Ernvall, R., Metsänkylä, T., 10.1090/S0025-5718-97-00843-0, Math. Comp. 66 (1997), 1353–1365. (1997) Zbl0903.11002MR1408373DOI10.1090/S0025-5718-97-00843-0
- Glaisher, J. W. L., On the residues of the sums of the inverse powers of numbers in arithmetical progression, Quart. J. Math. 32 (1900), 271–288. (1900)
- Granville, A., Some conjectures related to Fermat’s Last Theorem, Number Theory (Banff, AB, 1988), de Gruyter, Berlin (1990), 177–192. (1990) Zbl0702.11015MR1106660
- Granville, A., Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers, Organic Mathematics–Burnaby, BC 1995, CMS Conf. Proc., vol. 20, Amer. Math. Soc., Providence, RI, 1997, pp. 253–276. (1997) Zbl0903.11005MR1483922
- Granville, A., The square of the Fermat quotient, Integers 4 (2004), # A22. (2004) Zbl1083.11005MR2116007
- Hardy, G. H., Wright, E. M., An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1960. (1960) Zbl0086.25803
- Lehmer, E., On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. Math. (1938), 350–360. (1938) Zbl0019.00505MR1503412
- Ribenboim, P., 13 lectures on Fermat’s last theorem, Springer–Verlag, New York, Heidelberg, Berlin, 1979. (1979) Zbl0456.10006MR0551363
- Slavutsky, I. Sh., Leudesdorf’s theorem and Bernoulli numbers, Arch. Math. 35 (1999), 299–303. (1999)
- Sun, Z. H., 10.1016/S0166-218X(00)00184-0, Discrete Appl. Math. 105 (1–3) (2000), 193–223. (2000) Zbl0990.11008MR1780472DOI10.1016/S0166-218X(00)00184-0
- Sun, Z. W., 10.1090/S0002-9939-2011-10925-0, Proc. Amer. Math. Soc. 140 (2012), 415–428. (2012) MR2846311DOI10.1090/S0002-9939-2011-10925-0
- Tauraso, R., Congruences involving alternating multiple harmonic sums, Electron. J. Comb. 17 (2010), # R16. (2010) Zbl1222.11006MR2587747
- Wolstenholme, J., On certain properties of prime numbers, Quart. J. Pure Appl. Math. 5 (1862), 35–39. (1862)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.