Leudesdorf's theorem and Bernoulli numbers
Archivum Mathematicum (1999)
- Volume: 035, Issue: 4, page 299-303
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topReferences
top- Wilson quotients for composite moduli, Comp. Math. 67 (1998). No. 222, 843–861. MR1464140
- A generalization of Wolstenholme’s theorem, Amer. Math. Monthly 109 (1997), 557–560. Zbl0916.11002MR1453658
- Bernoulli numbers. Bibliography (1713–1990), Queen’s papers in Pure and Applied Mathematics, 1991, No. 87, 175 pp.; Appendix, Preprint (1994), 30 pp. MR1119305
- An introduction to theory of numbers, 5th ed., Oxford Sci. Publ., 1979. MR0067125
- On congruences involving Bernoulli numbers and quotients of Fermat and Wilson, Ann. Math. 39 (2) (1938), 350–360. MR1503412
- Some results in the elementary theory of numbers, Proc. London Math. Soc. 20 (1889), 199–212.
- An extention of Leudesdorf theorem, J. London Math. Soc. 12 (1937), 247–250.
- Staudt and arithmetic properties on Bernoulli numbers, Hist. Scient. 5 (1995), 70–74. MR1349737
- About von Staudt congruences for Bernoulli numbers, to appear. Zbl1024.11011MR1713678
- Introduction to cyclotomic fields, 2nd ed., Springer-Verlag, New York, 1997. Zbl0966.11047MR1421575
- On certain properties of prime numbers, Quart. J. Math. 5 (1862), 35–39.