A study of Galerkin method for the heat convection equations

Polina Vinogradova; Anatoli Zarubin

Applications of Mathematics (2012)

  • Volume: 57, Issue: 1, page 71-91
  • ISSN: 0862-7940

Abstract

top
The paper investigates the Galerkin method for an initial boundary value problem for heat convection equations. New error estimates for the approximate solutions and their derivatives in strong norm are obtained.

How to cite

top

Vinogradova, Polina, and Zarubin, Anatoli. "A study of Galerkin method for the heat convection equations." Applications of Mathematics 57.1 (2012): 71-91. <http://eudml.org/doc/247160>.

@article{Vinogradova2012,
abstract = {The paper investigates the Galerkin method for an initial boundary value problem for heat convection equations. New error estimates for the approximate solutions and their derivatives in strong norm are obtained.},
author = {Vinogradova, Polina, Zarubin, Anatoli},
journal = {Applications of Mathematics},
keywords = {approximate solution; error estimate; Galerkin method; heat convection equation; orthogonal projection; viscous fluid; approximate solution; error estimate; Galerkin method; orthogonal projection; heat convection equation; viscous fluid},
language = {eng},
number = {1},
pages = {71-91},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A study of Galerkin method for the heat convection equations},
url = {http://eudml.org/doc/247160},
volume = {57},
year = {2012},
}

TY - JOUR
AU - Vinogradova, Polina
AU - Zarubin, Anatoli
TI - A study of Galerkin method for the heat convection equations
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 71
EP - 91
AB - The paper investigates the Galerkin method for an initial boundary value problem for heat convection equations. New error estimates for the approximate solutions and their derivatives in strong norm are obtained.
LA - eng
KW - approximate solution; error estimate; Galerkin method; heat convection equation; orthogonal projection; viscous fluid; approximate solution; error estimate; Galerkin method; orthogonal projection; heat convection equation; viscous fluid
UR - http://eudml.org/doc/247160
ER -

References

top
  1. Agmon, S., 10.1002/cpa.3160150203, Commun. Pure Appl. Math. 15 (1962), 119-147. (1962) MR0147774DOI10.1002/cpa.3160150203
  2. Ambethkar, V., Numerical solutions of heat and mass transfer effects of an unsteady MHD free convective flow past an infinite vertical plate with constant suction, J. Naval Arch. Marine Eng. 5 (2008), 28-36. (2008) 
  3. Babskii, V. G., Kopachevskii, N. D., Myshkis, A. D., Slobozhanin, L. A., Tyuptsov, A. D., Fluid Mechanics of Weightlessness, Nauka Moscow (1976), Russian. (1976) 
  4. Beckenbach, E., Bellman, R., Inequalities, Springer Berlin (1965). (1965) Zbl0186.09605MR0192009
  5. Curry, J. H., Herring, J. R., Loncaric, J., Orszag, S. A., 10.1017/S0022112084001968, J. Fluid Mech. 147 (1984), 1-38. (1984) Zbl0547.76093DOI10.1017/S0022112084001968
  6. Daly, B. J., 10.1017/S0022112074002047, J. Fluid Mech. 64 (1974), 129-165. (1974) Zbl0282.76050DOI10.1017/S0022112074002047
  7. Gershuni, G. Z., Zhuhovitsky, E. M., Convective Stability of Incompressible Fluid, Nauka Moscow (1972), Russian. (1972) 
  8. Glushko, V. P., Krejn, S. G., Inequalities for the norms of derivative in spaces L p with weight, Sibirsk. Mat. Zh. 1 (1960), 343-382 Russian. (1960) MR0133681
  9. Krejn, S. G., Linear Differential Equations in Banach Spaces. Trans. Math. Monographs, Vol. 29, AMS Providence (1972). (1972) 
  10. Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach New York (1969). (1969) Zbl0184.52603MR0254401
  11. Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N., Linear and Quasilinear Equations of Parabolic Type, Nauka Moscow (1967), English transl.: Trans. Math. Monographs, Vol. 23 AMS Rhode Island (1968). (1967) Zbl0164.12302
  12. Shinbrot, M., Kotorynski, W. P., 10.1016/0022-247X(74)90115-2, J. Math. Anal. Appl. 45 (1974), 1-22. (1974) MR0361474DOI10.1016/0022-247X(74)90115-2
  13. Solonnikov, V. A., On estimates of the solutions of elliptic and parabolic systems in L p , Tr. MIAN SSSR 102 (1967), 137-160 Russian. (1967) MR0228809
  14. Temam, R., Navier-Stokes Equations. Theory and Numerical Analysis. Rev. ed, North-Holland Publishing Company Amsterdam (1979). (1979) Zbl0426.35003
  15. Vinogradova, P., Zarubin, A., 10.1080/01630560902735132, Numer. Funct. Anal. Optim. 30 (2009), 148-167. (2009) MR2492080DOI10.1080/01630560902735132
  16. Werne, J., DeLuca, E. E., Rosner, R., Cattaneo, F., 10.1103/PhysRevLett.64.2370, Phys. Rev. Lett. 64 (1990), 2370-2373. (1990) DOI10.1103/PhysRevLett.64.2370

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.