On the intersection of two distinct -generalized Fibonacci sequences
Mathematica Bohemica (2012)
- Volume: 137, Issue: 4, page 403-413
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMarques, Diego. "On the intersection of two distinct $k$-generalized Fibonacci sequences." Mathematica Bohemica 137.4 (2012): 403-413. <http://eudml.org/doc/247189>.
@article{Marques2012,
abstract = {Let $k\ge 2$ and define $F^\{(k)\}:=(F_n^\{(k)\})_\{n\ge 0\}$, the $k$-generalized Fibonacci sequence whose terms satisfy the recurrence relation $F_n^\{(k)\}=F_\{n-1\}^\{(k)\}+F_\{n-2\}^\{(k)\}+\cdots + F_\{n-k\}^\{(k)\}$, with initial conditions $0,0,\dots ,0,1$ ($k$ terms) and such that the first nonzero term is $F_1^\{(k)\}=1$. The sequences $F:=F^\{(2)\}$ and $T:=F^\{(3)\}$ are the known Fibonacci and Tribonacci sequences, respectively. In 2005, Noe and Post made a conjecture related to the possible solutions of the Diophantine equation $F_n^\{(k)\}=F_m^\{(\ell )\}$. In this note, we use transcendental tools to provide a general method for finding the intersections $F^\{(k)\}\cap F^\{(m)\}$ which gives evidence supporting the Noe-Post conjecture. In particular, we prove that $F\cap T=\lbrace 0,1,2,13\rbrace $.},
author = {Marques, Diego},
journal = {Mathematica Bohemica},
keywords = {$k$-generalized Fibonacci numbers; linear forms in logarithms; reduction method; -generalized Fibonacci numbers; Tribonacci numbers; linear forms in logarithms; reduction method},
language = {eng},
number = {4},
pages = {403-413},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the intersection of two distinct $k$-generalized Fibonacci sequences},
url = {http://eudml.org/doc/247189},
volume = {137},
year = {2012},
}
TY - JOUR
AU - Marques, Diego
TI - On the intersection of two distinct $k$-generalized Fibonacci sequences
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 4
SP - 403
EP - 413
AB - Let $k\ge 2$ and define $F^{(k)}:=(F_n^{(k)})_{n\ge 0}$, the $k$-generalized Fibonacci sequence whose terms satisfy the recurrence relation $F_n^{(k)}=F_{n-1}^{(k)}+F_{n-2}^{(k)}+\cdots + F_{n-k}^{(k)}$, with initial conditions $0,0,\dots ,0,1$ ($k$ terms) and such that the first nonzero term is $F_1^{(k)}=1$. The sequences $F:=F^{(2)}$ and $T:=F^{(3)}$ are the known Fibonacci and Tribonacci sequences, respectively. In 2005, Noe and Post made a conjecture related to the possible solutions of the Diophantine equation $F_n^{(k)}=F_m^{(\ell )}$. In this note, we use transcendental tools to provide a general method for finding the intersections $F^{(k)}\cap F^{(m)}$ which gives evidence supporting the Noe-Post conjecture. In particular, we prove that $F\cap T=\lbrace 0,1,2,13\rbrace $.
LA - eng
KW - $k$-generalized Fibonacci numbers; linear forms in logarithms; reduction method; -generalized Fibonacci numbers; Tribonacci numbers; linear forms in logarithms; reduction method
UR - http://eudml.org/doc/247189
ER -
References
top- Agronomof, M., Sur une suite récurrente, Mathesis 4 (1914), 125-126 French. (1914)
- Alekseyev, M. A., 10.1515/integ.2011.021, Integers 11 (2011), 239-259. (2011) Zbl1228.11018MR2988061DOI10.1515/integ.2011.021
- Back, G., Caragiu, M., The greatest prime factor and recurrent sequences, Fibonacci Q. 48 (2010), 358-362. (2010) Zbl1221.11032MR2766785
- Bugeaud, Y., Mignotte, M., Siksek, S., 10.4007/annals.2006.163.969, Ann. Math. 163 (2006), 969-1018. (2006) Zbl1113.11021MR2215137DOI10.4007/annals.2006.163.969
- Carroll, D., Jacobson, E. T., Somer, L., Distribution of two-term recurrence sequences mod , Fibonacci Q. 32 (1994), 260-265. (1994) MR1285757
- Dujella, A., Pethö, A., A generalization of a theorem of Baker and Davenport, Q. J. Math., Oxf. II Ser. 49 (1998), 291-306. (1998) Zbl0911.11018MR1645552
- Dresden, G. P., A simplified Binet formula for -generalized Fibonacci numbers, Preprint, arXiv:0905.0304v1.
- Erdös, P., Selfridge, J. L., 10.1215/ijm/1256050816, Illinois J. Math. 19 (1975), 292-301. (1975) Zbl0295.10017MR0376517DOI10.1215/ijm/1256050816
- Feinberg, M., Fibonacci-Tribonacci, Fibonacci Q. 1 (1963), 71-74. (1963)
- Ferguson, D. E., An expression for generalized Fibonacci numbers, Fibonacci Q. 4 (1966), 270-273. (1966) Zbl0139.26703MR0207622
- Flores, I., Direct calculation of -generalized Fibonacci numbers, Fibonacci Q. 5 (1967), 259-266. (1967) Zbl0163.03703MR0222016
- Gabai, H., Generalized Fibonacci -sequences, Fibonacci Q. 8 (1970), 31-38. (1970) Zbl0211.07301MR0263734
- Jacobson, E. T., Distribution of the Fibonacci numbers mod , Fibonacci Q. 30 (1992), 211-215. (1992) MR1175305
- Kalman, D., Generalized Fibonacci numbers by matrix methods, Fibonacci Q. 20 (1982), 73-76. (1982) Zbl0472.10016MR0660765
- Kessler, D., Schiff, J., A combinatoric proof and generalization of Ferguson’s formula for -generalized Fibonacci numbers, Fibonacci Q. 42 (2004), 266-273. (2004) Zbl1076.11008MR2093882
- Klaška, J., Tribonacci modulo , Math. Bohem. 133 (2008), 267-288. (2008) MR2494781
- Klaška, J., Tribonacci modulo and , Math. Bohem. 133 (2008), 377-387. (2008) MR2472486
- Klaška, J., A search for Tribonacci-Wieferich primes, Acta Math. Univ. Ostrav. 16 (2008), 15-20. (2008) Zbl1203.11020MR2498633
- Klaška, J., On Tribonacci-Wieferich primes, Fibonacci Q. 46/47 (2008/09), 290-297. (2008) MR2589607
- Klaška, J., 10.1007/s10114-010-8433-8, Acta Math. Sin. (Engl. Ser.) 26 (2010), 465-476. (2010) Zbl1238.11016MR2591606DOI10.1007/s10114-010-8433-8
- Klaška, J., Skula, L., The cubic character of the Tribonacci roots, Fibonacci Q. 48 (2010), 21-28. (2010) Zbl1219.11030MR2663415
- Klaška, J., Skula, L., Periods of the Tribonacci sequence modulo a prime , Fibonacci Q. 48 (2010), 228-235. (2010) Zbl1217.11020MR2722219
- Klaška, J., Skula, L., A note on the cubic characters of Tribonacci roots, Fibonacci Q. 48 (2010), 324-326. (2010) Zbl1220.11020MR2766780
- Lin, P. Y., De Moivre-type identities for the Tribonacci numbers, Fibonacci Q. 26 (1988), 131-134. (1988) Zbl0641.10006MR0938586
- Luca, F., Fibonacci and Lucas numbers with only one distinct digit, Port. Math. 57 (2000), 243-254. (2000) Zbl0958.11007MR1759818
- Luca, F., 10.1216/rmjm/1181070412, Rocky Mountain J. Math. 29 (1999), 1387-1411. (1999) Zbl0978.11010MR1743376DOI10.1216/rmjm/1181070412
- Luca, F., Marques, D., 10.5802/jtnb.740, J. Théor. Nombres Bordx. 22 (2010), 703-718. (2010) Zbl1231.11040MR2769339DOI10.5802/jtnb.740
- Marques, D., Togbé, A., 10.1016/j.crma.2010.06.006, C. R. Acad. Sci. Paris I 348 (2010), 717-720. (2010) MR2671147DOI10.1016/j.crma.2010.06.006
- Marques, D., Togbé, A., 10.4064/cm124-2-1, Colloq. Math. 124 (2011), 145-155. (2011) Zbl1246.11036MR2842943DOI10.4064/cm124-2-1
- Matveev, E. M., 10.1070/IM2000v064n06ABEH000314, Izv. Math. 64 1217-1269 (2000), translation from Izv. Ross. Akad. Nauk, Ser. Mat. 64 (2000), 125-180 (2000), 1217-1269. (2000) Zbl1013.11043MR1817252DOI10.1070/IM2000v064n06ABEH000314
- Mignotte, M., 10.1016/0304-3975(78)90043-9, Theor. Comput. Sci. 7 (1978), 117-121 French. (1978) Zbl0393.10009MR0498356DOI10.1016/0304-3975(78)90043-9
- Noe, T. D., Post, J. V., Primes in Fibonacci -step and Lucas -step sequences, J. Integer Seq. 8 (2005). (2005) Zbl1101.11008MR2165333
- Pethö, A., Fifteen problems in number theory, Acta Univ. Sapientiae Math. 2 (2010), 72-83. (2010) Zbl1201.11012MR2643936
- Schlickewei, H. P., Schmidt, W. M., Linear equations in members of recurrence sequences, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 20 (1993), 219-246. (1993) Zbl0803.11010MR1233637
- Schlickewei, H. P., Schmidt, W. M., 10.4064/aa-72-1-1-44, Acta Arith. 72 (1995), 1-44. (1995) Zbl0851.11007MR1346803DOI10.4064/aa-72-1-1-44
- Spickerman, W. R., Binet's formula for the Tribonacci sequence, Fibonacci Q. 20 (1982), 118-120. (1982) Zbl0486.10011MR0673292
- Stein, S. K., 10.1307/mmj/1028998776, Michigan Math. J. 9 (1962), 399-402. (1962) Zbl0271.10008MR0154844DOI10.1307/mmj/1028998776
- Waddill, E. M., Some properties of a generalized Fibonacci sequence modulo , Fibonacci Q. 16 (1978), 344-353. (1978) Zbl0394.10007MR0514322
- Wolfram, D. A., Solving generalized Fibonacci recurrences, Fibonacci Q. 36 (1998), 129-145. (1998) Zbl0911.11014MR1622060
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.