Perfect powers in the summatory function of the power tower
Florian Luca[1]; Diego Marques[2]
- [1] Instituto de Matemáticas Universidad Nacional Autónoma de México C.P. 58089, Morelia, Michoacán, México
- [2] Departamento de Matemática Universidade de Brasília Brasília, DF, Brazil
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 3, page 703-718
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topLuca, Florian, and Marques, Diego. "Perfect powers in the summatory function of the power tower." Journal de Théorie des Nombres de Bordeaux 22.3 (2010): 703-718. <http://eudml.org/doc/116428>.
@article{Luca2010,
abstract = {Let $(a_n)_\{n\ge 1\}$ be the sequence given by $a_1=1$ and $a_n=n^\{a_\{n-1\}\}$ for $n\ge 2$. In this paper, we show that the only solution of the equation\[ a\_1+\cdots +a\_n=m^l \]is in positive integers $l>1,~m$ and $n$ is $m=n=1$.},
affiliation = {Instituto de Matemáticas Universidad Nacional Autónoma de México C.P. 58089, Morelia, Michoacán, México; Departamento de Matemática Universidade de Brasília Brasília, DF, Brazil},
author = {Luca, Florian, Marques, Diego},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {exponential Diophantine equations},
language = {eng},
number = {3},
pages = {703-718},
publisher = {Université Bordeaux 1},
title = {Perfect powers in the summatory function of the power tower},
url = {http://eudml.org/doc/116428},
volume = {22},
year = {2010},
}
TY - JOUR
AU - Luca, Florian
AU - Marques, Diego
TI - Perfect powers in the summatory function of the power tower
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 3
SP - 703
EP - 718
AB - Let $(a_n)_{n\ge 1}$ be the sequence given by $a_1=1$ and $a_n=n^{a_{n-1}}$ for $n\ge 2$. In this paper, we show that the only solution of the equation\[ a_1+\cdots +a_n=m^l \]is in positive integers $l>1,~m$ and $n$ is $m=n=1$.
LA - eng
KW - exponential Diophantine equations
UR - http://eudml.org/doc/116428
ER -
References
top- Y. Bugeaud and M. Laurent, Minoration effective de la distance p-adique entre puissances de nombres algébriques. J. Number Theory 61 (1996), 31–42. Zbl0870.11045MR1423057
- Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers. Ann. of Math. (2) 163 (2006), 969–1018. Zbl1113.11021MR2215137
- L. K. Hua, Introduction to number theory. Springer-Verlag, 1982. Zbl0483.10001MR665428
- E. Landau, Verallgemeinerung eines Polyaschen Satzes auf algebraische Zahlkörper. Nachr. Kgl. Ges. Wiss. Göttingen, Math.-Phys. Kl. (1918), 478–488. Zbl46.0267.01
- M. Laurent, M. Mignotte and Yu. Nesterenko, Formes linéaires en deux logarithmes et déterminants d’interpolation. J. Number Theory 55 (1995), 285–321. Zbl0843.11036MR1366574
- D. Poulakis, Solutions entières de l’équation . Sém. Théor. Nombres Bordeaux (2) 3 (1991), 187–199. Zbl0733.11009MR1116106
- N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. http://www.research.att.com/ njas/sequences/. Zbl1274.11001
- J. Sondow, An irrationality measure for Liouville numbers and conditional measures for Euler’s constant. Preprint, 2003, http://arXiv.org/abs/math.NT/0307308. Zbl1113.11040MR1990621
- J. Sondow, Irrationality measures, irrationality bases, and a theorem of Jarnik. Preprint, 2004, http://arXiv.org/abs/math.NT/0406300.
- P. Voutier, An effective lower bound for the height of algebraic numbers. Acta Arith. 74 (1996), 81–95. Zbl0838.11065MR1367580
- R. T. Worley, Estimating . J. Austral. Math. Soc. Ser. A 31 (1981), 202–206. Zbl0465.10026MR629174
- K. Yu, -adic logarithmic forms and group varieties I. J. Reine Angew. Math. 502 (1998), 29–92. Zbl0912.11029MR1647551
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.