N-compact frames
Commentationes Mathematicae Universitatis Carolinae (1991)
- Volume: 32, Issue: 1, page 173-187
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSchlitt, Greg M.. "N-compact frames." Commentationes Mathematicae Universitatis Carolinae 32.1 (1991): 173-187. <http://eudml.org/doc/247258>.
@article{Schlitt1991,
abstract = {We investigate notions of $\mathbb \{N\}$-compactness for frames. We find that the analogues of equivalent conditions defining $\mathbb \{N\}$-compact spaces are no longer equivalent in the frame context. Indeed, the closed quotients of frame ‘$\mathbb \{N\}$-cubes’ are exactly 0-dimensional Lindelöf frames, whereas those frames which satisfy a property based on the ultrafilter condition for spatial $\mathbb \{N\}$-compactness form a much larger class, and better embody what ‘$\mathbb \{N\}$-compact frames’ should be. This latter property is expressible without reference to maximal ideals or filters. We construct the co-reflections for both of the classes, (the ‘$\mathbb \{N\}$-compactifications’), which both restrict to the spatial $\mathbb \{N\}$-compactification.},
author = {Schlitt, Greg M.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {frame; locale; complete Heyting algebra; $\mathbb \{N\}$-compact; Lindelöf locales; -compactness; Stone -compact locales; Herrlich -compact locales},
language = {eng},
number = {1},
pages = {173-187},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {N-compact frames},
url = {http://eudml.org/doc/247258},
volume = {32},
year = {1991},
}
TY - JOUR
AU - Schlitt, Greg M.
TI - N-compact frames
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 1
SP - 173
EP - 187
AB - We investigate notions of $\mathbb {N}$-compactness for frames. We find that the analogues of equivalent conditions defining $\mathbb {N}$-compact spaces are no longer equivalent in the frame context. Indeed, the closed quotients of frame ‘$\mathbb {N}$-cubes’ are exactly 0-dimensional Lindelöf frames, whereas those frames which satisfy a property based on the ultrafilter condition for spatial $\mathbb {N}$-compactness form a much larger class, and better embody what ‘$\mathbb {N}$-compact frames’ should be. This latter property is expressible without reference to maximal ideals or filters. We construct the co-reflections for both of the classes, (the ‘$\mathbb {N}$-compactifications’), which both restrict to the spatial $\mathbb {N}$-compactification.
LA - eng
KW - frame; locale; complete Heyting algebra; $\mathbb {N}$-compact; Lindelöf locales; -compactness; Stone -compact locales; Herrlich -compact locales
UR - http://eudml.org/doc/247258
ER -
References
top- Banaschewski B., Über nulldimensionale Räume, Math. Nachr. 13 (1955), 129-140. (1955) Zbl0064.41303MR0086287
- Banaschewski B., Universal 0-dimensional compactifications, preprint.
- Banaschewski B., Mulvey C., Stone-Čech compactification of locales I, Houston Journal of Mathematics 6 (1980), 301-311. (1980) Zbl0473.54026MR0597771
- Chew K.P., A characterization of -compact spaces, Proc. Amer. Math. Soc. 26 (1970), 679-682. (1970) MR0267534
- Dowker C.H., Strauss D., Sums in the category of frames, Houston Journal of Mathematics 3 (1976), 17-32. (1976) Zbl0332.54005MR0442900
- Eda K., Ohta H., On Abelian Groups of Integer-Valued Continuous Functions, their -duals and -reflexivity, In Abelian Group Theory, Proc. of Third Conf., Oberwolfach. Gordon & Breach Science Publishers, 1987. MR1011316
- Engelking R., Mrówka S., On E-compact spaces, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 6 (1958), 429-436. (1958) MR0097042
- Herrlich H., -kompakte Räume, Math.Zeitschr. 96 (1967), 228-255. (1967) MR0205218
- Jech T., Set Theory, Academic Press, New York-London, 1978. Zbl1007.03002MR0506523
- Johnstone P.T., The point of pointless topology, Bull. Amer. Math. Soc. 8 (1983), 41-53. (1983) Zbl0499.54002MR0682820
- Johnstone P.T., Stone Spaces, Cambridge Studies in Advanced Mathematics 3, Cambridge University Press, 1982. Zbl0586.54001MR0698074
- Kelley J.L., The Tychonoff product theorem implies the axiom of choice, Fund. Math. 37 (1950), 75-76. (1950) Zbl0039.28202MR0039982
- Madden J., Vermeer J., Lindelöf locales and realcompactness, Math. Proc. Camb. Phil. Soc. (1986), 437-480. (1986) Zbl0603.54021
- Mrówka S., Structures of continuous functions III, Verh. Nederl. Akad. Weten., Sectl I, 68 (1965), 74-82. (1965) MR0237580
- Mrówka S., Structures of continuous functions VIII, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 20 (1972), 563-566. (1972) MR0313987
- Schlitt G., The Lindelöf-Tychonoff theorem and choice principles, to appear. Zbl0737.03024MR1104601
- Steen L.A., Seebach J.A., Counterexamples in Topology, Holt, Rinehart & Wilson, 1970 (Second edition by Springer-Verlag, 1978). Zbl0386.54001MR0507446
- Vermeulen H.J., Doctoral Diss., University of Sussex, 1987.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.