A dual space characterization of - and -lattices of order ω+
The concept of a deductive system has been intensively studied in algebraic logic, per se and in connection with various types of filters. In this paper we introduce an axiomatization which shows how several resembling theorems that had been separately proved for various algebras of logic can be given unique proofs within this axiomatic framework. We thus recapture theorems already known in the literature, as well as new ones. As a by-product we introduce the class of pre-BCK algebras.
Following the introduction of separability in frames ([2]) we investigate further properties of this notion and establish some consequences of the Urysohn metrization theorem for frames that are frame counterparts of corresponding results in spaces. In particular we also show that regular subframes of compact metrizable frames are metrizable.
We introduce two unary operators G and H on a relatively pseudocomplemented lattice which form an algebraic axiomatization of the tense quantifiers “it is always going to be the case that” and “it has always been the case that”. Their axiomatization is an extended version for the classical logic and it is in accordance with these operators on many-valued Łukasiewicz logic. Finally, we get a general construction of these tense operators on complete relatively pseudocomplemented lattice which is a...
Compactifications of biframes are defined, and characterized internally by means of strong inclusions. The existing description of the compact, zero-dimensional coreflection of a biframe is used to characterize all zero-dimensional compactifications, and a criterion identifying them by their strong inclusions is given. In contrast to the above, two sufficient conditions and several examples show that the existence of smallest biframe compactifications differs significantly from the corresponding...
The logical foundations of processes handling uncertainty in information use some classes of algebras as algebraic semantics. Bounded residuated lattice ordered monoids (monoids) are common generalizations of -algebras, i.e., algebras of the propositional basic fuzzy logic, and Heyting algebras, i.e., algebras of the propositional intuitionistic logic. From the point of view of uncertain information, sets of provable formulas in inference systems could be described by fuzzy filters of the corresponding...
We show that prohibiting a combinatorial tree in the Priestley duals determines an axiomatizable class of distributive lattices. On the other hand, prohibiting -crowns with does not. Given what is known about the diamond, this is another strong indication that this fact characterizes combinatorial trees. We also discuss varieties of 2-Heyting algebras in this context.
We characterize those regular continuous frames for which the least compactification is a perfect compactification. Perfect compactifications are those compactifications of frames for which the right adjoint of the compactification map preserves disjoint binary joins. Essential to our characterization is the construction of the frame analog of the two-point compactification of a locally compact Hausdorff space, and the concept of remainder in a frame compactification. Indeed, one of the characterizations...
In this paper we shall give some results on irreducible deductive systems in BCK-algebras and we shall prove that the set of all deductive systems of a BCK-algebra is a Heyting algebra. As a consequence of this result we shall show that the annihilator of a deductive system is the the pseudocomplement of . These results are more general than that the similar results given by M. Kondo in [7].