Some new classes of topological vector spaces with closed graph theorems

Brian Rodrigues

Commentationes Mathematicae Universitatis Carolinae (1991)

  • Volume: 32, Issue: 2, page 287-296
  • ISSN: 0010-2628

Abstract

top
In this note, we investigate non-locally-convex topological vector spaces for which the closed graph theorem holds. In doing so, we introduce new classes of topological vector spaces. Our study includes a direct extension of Pták duality to the non-locally-convex situation.

How to cite

top

Rodrigues, Brian. "Some new classes of topological vector spaces with closed graph theorems." Commentationes Mathematicae Universitatis Carolinae 32.2 (1991): 287-296. <http://eudml.org/doc/247278>.

@article{Rodrigues1991,
abstract = {In this note, we investigate non-locally-convex topological vector spaces for which the closed graph theorem holds. In doing so, we introduce new classes of topological vector spaces. Our study includes a direct extension of Pták duality to the non-locally-convex situation.},
author = {Rodrigues, Brian},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {inverse seminorm; Mackey seminorm; nearly-semi-continuous; semi-barrelled; semi-$B$-complete; semi-infra-(s); semi-Mackey; inverse seminorm; Mackey seminorm; nearly-semi-continuous; semi- barrelled; semi--complete; semi-infra-(s); semi-Mackey; non-locally- convex- topological vector spaces for which the closed graph theorem holds; Pták duality},
language = {eng},
number = {2},
pages = {287-296},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some new classes of topological vector spaces with closed graph theorems},
url = {http://eudml.org/doc/247278},
volume = {32},
year = {1991},
}

TY - JOUR
AU - Rodrigues, Brian
TI - Some new classes of topological vector spaces with closed graph theorems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 2
SP - 287
EP - 296
AB - In this note, we investigate non-locally-convex topological vector spaces for which the closed graph theorem holds. In doing so, we introduce new classes of topological vector spaces. Our study includes a direct extension of Pták duality to the non-locally-convex situation.
LA - eng
KW - inverse seminorm; Mackey seminorm; nearly-semi-continuous; semi-barrelled; semi-$B$-complete; semi-infra-(s); semi-Mackey; inverse seminorm; Mackey seminorm; nearly-semi-continuous; semi- barrelled; semi--complete; semi-infra-(s); semi-Mackey; non-locally- convex- topological vector spaces for which the closed graph theorem holds; Pták duality
UR - http://eudml.org/doc/247278
ER -

References

top
  1. Adasch N., Topologische Produkte gewisser topologischer Vectorräume, Math. Ann. 186 (1970), 280-284. (1970) MR0276708
  2. Adasch N., Tonnelierte Räume und zwei Sätze von Banach, Math. Ann. 186 (1970), 209-214. (1970) Zbl0184.14804MR0467230
  3. Adasch N., Eine Bemerkung über den Graphensatz, Math. Ann. 186 (1970), 327-333. (1970) Zbl0184.14901MR0273345
  4. Adasch N., Der Graphensatz in topologischen Vectorräumen, Math. Z. 119 (1971), 131-142. (1971) MR0412764
  5. Adasch N., Vollständigkeit und der Graphensatz, J. reine angew. Math. 249 (1971), 217-220. (1971) Zbl0238.46004MR0288544
  6. Adasch N., Ernst B., Keim D., Topological vector spaces, The theory without local convexity conditions, Lecture Notes in Mathematics, 639, Eds. A. Dodd and B. Eckmann, Springer-Verlag, Berlin, Heidelberg, New York, 1978. MR0487376
  7. Beckenstein E., Narici L., Topological vector spaces, Marcel Dekker, Inc., New York and Basel, 1985. Zbl0569.46001MR0812056
  8. Horváth J., Locally convex spaces, Lecture Notes in Mathematics, 331, Ed. L. Waelbroeck, Springer-Verlag, New York, Heidelberg, Berlin, 1973. MR0482027
  9. Iyahen S.O., On certain classes of topological spaces, Proc. London Math. Soc. (3) 18 (1968), 285-307. (1968) MR0226358
  10. Iyahen S.O., Semiconvex spaces, Glasgow J. Math. 9 (1968), 111-118. (1968) Zbl0184.34003MR0239390
  11. Jarchow H., Locally convex spaces, B.G. Tuebner, Stuttgart, 1981. Zbl0466.46001MR0632257
  12. Kelley J., Namioka I., Linear topological spaces, Van Nostrand, Princeton, 1963. Zbl0318.46001MR0166578
  13. Köthe G., General linear transformations of locally convex spaces, Math. Ann. 159 (1965), 309-328. (1965) MR0192347
  14. Köthe G., Topological vector spaces I,II, Springer-Verlag, New York, Heidelberg, Berlin, 1979. MR0248498
  15. Kōmura Y., On linear topological spaces, Kumamoto J. Sci., Ser.A 5 No. 3 (1962), 148-157. (1962) MR0151817
  16. Powell M., On Komura's closed-graph theorem, Trans. AMS 211 (1975), 391-426. (1975) Zbl0318.46007MR0380339
  17. Pták V., Completeness and the open mapping theorem, Bull. Soc. Math. France 86 (1958), 41-74. (1958) MR0105606
  18. Raikov D.A., Closed graph theorem and completeness, Proc. 4th All Union Math. Congress, Leningrad, 1961. 
  19. Robertson W., Completions of topological vector spaces, Proc. London Math. Soc. 8 (1958), 242-257. (1958) Zbl0081.32604MR0098298
  20. Robertson A., Robertson W., On the closed graph theorem, Proc. Glasgow Math. Assoc. 3 (1956), 9-12. (1956) Zbl0073.08702MR0084108
  21. Rodrigues B., On the Pták homomorphism theorem, J. Aust. Math. Soc. Ser. A 47 (1989), 322-333. (1989) Zbl0708.46013MR1008846
  22. Schaefer H.H., Topological vector spaces, Springer-Verlag, New York, Heidelberg, Berlin, 1986. Zbl0983.46002MR0342978
  23. Tomášek S., M-barrelled spaces, Comment. Math. Univ. Carolinae 11 (1970), 185-204. (1970) MR0271691
  24. Tomášek S., M-bornological spaces, Comment. Math. Univ. Carolinae 11 (1970), 235-248. (1970) MR0271692
  25. Valdivia Ure na M., El teorema general de la gráfica cerrada en los espacios vectoriales topológicos localmente convexos, Rev. Real Acad. Ci. Exact. Fis. Nat. Madrid 62 (1968), 545-551. (1968) MR0240593
  26. Valdivia M., Sobre el teorema de la gráfica cerreda, Collectanea Math. 22 (1971), 51-72. (1971) 
  27. Valdivia M., Locally convex spaces, Mathematics Studies 67, North-Holland, Amsterdam, New York, Oxford, 1982. Zbl0708.46003MR0671092

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.