Some new classes of topological vector spaces with closed graph theorems
Commentationes Mathematicae Universitatis Carolinae (1991)
- Volume: 32, Issue: 2, page 287-296
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topRodrigues, Brian. "Some new classes of topological vector spaces with closed graph theorems." Commentationes Mathematicae Universitatis Carolinae 32.2 (1991): 287-296. <http://eudml.org/doc/247278>.
@article{Rodrigues1991,
abstract = {In this note, we investigate non-locally-convex topological vector spaces for which the closed graph theorem holds. In doing so, we introduce new classes of topological vector spaces. Our study includes a direct extension of Pták duality to the non-locally-convex situation.},
author = {Rodrigues, Brian},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {inverse seminorm; Mackey seminorm; nearly-semi-continuous; semi-barrelled; semi-$B$-complete; semi-infra-(s); semi-Mackey; inverse seminorm; Mackey seminorm; nearly-semi-continuous; semi- barrelled; semi--complete; semi-infra-(s); semi-Mackey; non-locally- convex- topological vector spaces for which the closed graph theorem holds; Pták duality},
language = {eng},
number = {2},
pages = {287-296},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some new classes of topological vector spaces with closed graph theorems},
url = {http://eudml.org/doc/247278},
volume = {32},
year = {1991},
}
TY - JOUR
AU - Rodrigues, Brian
TI - Some new classes of topological vector spaces with closed graph theorems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 2
SP - 287
EP - 296
AB - In this note, we investigate non-locally-convex topological vector spaces for which the closed graph theorem holds. In doing so, we introduce new classes of topological vector spaces. Our study includes a direct extension of Pták duality to the non-locally-convex situation.
LA - eng
KW - inverse seminorm; Mackey seminorm; nearly-semi-continuous; semi-barrelled; semi-$B$-complete; semi-infra-(s); semi-Mackey; inverse seminorm; Mackey seminorm; nearly-semi-continuous; semi- barrelled; semi--complete; semi-infra-(s); semi-Mackey; non-locally- convex- topological vector spaces for which the closed graph theorem holds; Pták duality
UR - http://eudml.org/doc/247278
ER -
References
top- Adasch N., Topologische Produkte gewisser topologischer Vectorräume, Math. Ann. 186 (1970), 280-284. (1970) MR0276708
- Adasch N., Tonnelierte Räume und zwei Sätze von Banach, Math. Ann. 186 (1970), 209-214. (1970) Zbl0184.14804MR0467230
- Adasch N., Eine Bemerkung über den Graphensatz, Math. Ann. 186 (1970), 327-333. (1970) Zbl0184.14901MR0273345
- Adasch N., Der Graphensatz in topologischen Vectorräumen, Math. Z. 119 (1971), 131-142. (1971) MR0412764
- Adasch N., Vollständigkeit und der Graphensatz, J. reine angew. Math. 249 (1971), 217-220. (1971) Zbl0238.46004MR0288544
- Adasch N., Ernst B., Keim D., Topological vector spaces, The theory without local convexity conditions, Lecture Notes in Mathematics, 639, Eds. A. Dodd and B. Eckmann, Springer-Verlag, Berlin, Heidelberg, New York, 1978. MR0487376
- Beckenstein E., Narici L., Topological vector spaces, Marcel Dekker, Inc., New York and Basel, 1985. Zbl0569.46001MR0812056
- Horváth J., Locally convex spaces, Lecture Notes in Mathematics, 331, Ed. L. Waelbroeck, Springer-Verlag, New York, Heidelberg, Berlin, 1973. MR0482027
- Iyahen S.O., On certain classes of topological spaces, Proc. London Math. Soc. (3) 18 (1968), 285-307. (1968) MR0226358
- Iyahen S.O., Semiconvex spaces, Glasgow J. Math. 9 (1968), 111-118. (1968) Zbl0184.34003MR0239390
- Jarchow H., Locally convex spaces, B.G. Tuebner, Stuttgart, 1981. Zbl0466.46001MR0632257
- Kelley J., Namioka I., Linear topological spaces, Van Nostrand, Princeton, 1963. Zbl0318.46001MR0166578
- Köthe G., General linear transformations of locally convex spaces, Math. Ann. 159 (1965), 309-328. (1965) MR0192347
- Köthe G., Topological vector spaces I,II, Springer-Verlag, New York, Heidelberg, Berlin, 1979. MR0248498
- Kōmura Y., On linear topological spaces, Kumamoto J. Sci., Ser.A 5 No. 3 (1962), 148-157. (1962) MR0151817
- Powell M., On Komura's closed-graph theorem, Trans. AMS 211 (1975), 391-426. (1975) Zbl0318.46007MR0380339
- Pták V., Completeness and the open mapping theorem, Bull. Soc. Math. France 86 (1958), 41-74. (1958) MR0105606
- Raikov D.A., Closed graph theorem and completeness, Proc. 4th All Union Math. Congress, Leningrad, 1961.
- Robertson W., Completions of topological vector spaces, Proc. London Math. Soc. 8 (1958), 242-257. (1958) Zbl0081.32604MR0098298
- Robertson A., Robertson W., On the closed graph theorem, Proc. Glasgow Math. Assoc. 3 (1956), 9-12. (1956) Zbl0073.08702MR0084108
- Rodrigues B., On the Pták homomorphism theorem, J. Aust. Math. Soc. Ser. A 47 (1989), 322-333. (1989) Zbl0708.46013MR1008846
- Schaefer H.H., Topological vector spaces, Springer-Verlag, New York, Heidelberg, Berlin, 1986. Zbl0983.46002MR0342978
- Tomášek S., M-barrelled spaces, Comment. Math. Univ. Carolinae 11 (1970), 185-204. (1970) MR0271691
- Tomášek S., M-bornological spaces, Comment. Math. Univ. Carolinae 11 (1970), 235-248. (1970) MR0271692
- Valdivia Ure na M., El teorema general de la gráfica cerrada en los espacios vectoriales topológicos localmente convexos, Rev. Real Acad. Ci. Exact. Fis. Nat. Madrid 62 (1968), 545-551. (1968) MR0240593
- Valdivia M., Sobre el teorema de la gráfica cerreda, Collectanea Math. 22 (1971), 51-72. (1971)
- Valdivia M., Locally convex spaces, Mathematics Studies 67, North-Holland, Amsterdam, New York, Oxford, 1982. Zbl0708.46003MR0671092
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.