Completeness and the open mapping theorem
Bulletin de la Société Mathématique de France (1958)
- Volume: 86, page 41-74
- ISSN: 0037-9484
Access Full Article
topHow to cite
topReferences
top- [1] BANACH (STEFAN). — Théorie des opérations linéaires, Warszawa, 1932 (Monografje Matematyczne, Tom 1). Zbl0005.20901JFM58.0420.01
- [2] COLLINS (HERON SHERWOOD). — Completeness and compactness in linear topological spaces (Trans. Amer. math. Soc., t. 79, 1955, p. 256-280). Zbl0064.35502MR16,1030a
- [3] GROTHENDIECK (ALEXANDRE). — Sur la complétion du dual d'un espace vectoriel localement convexe (C. R. Acad. Sc., t. 230, 1950, p. 605-606). Zbl0034.37401
- [4] GROTHENDIECK (ALEXANDRE). — Sur les espaces (F) et (DF) (Summa Bras. Math., t. 3, 1954, p. 57-123). Zbl0058.09803MR17,765b
- [5] KAPLAN (SAMUEL). — Cartesian products of reals (Amer. J. Math., t. 74, 1952, p. 936-654). Zbl0049.35402MR14,1002a
- [6] KÖTHE (GOTTFRIED). — Die Quotientenräume eines linearen vollkommenen Raumes (Math. Z., t. 5, 1949, p. 17-35). Zbl0029.05001
- [7] KREIN (M.) and SMULIAN (V.). — On regularly convex sets in the space conjugate to a Banach space (Annals of Math., Series 2, t. 41, 1940, p. 556-583). Zbl0024.41305MR1,335eJFM66.0533.02
- [8] PTÁK (VLASTIMIL). — On complete topological linear spaces (Czechoslovak Math. J., t. 3, (78), 1953, p. 301-364). Zbl0052.33803MR16,262c
- [9] PTÁK (VLASTIMIL). — Compact subsets of convex topological linear spaces (Czechoslovak Math. J., t. 4, (79), 1954, p. 51-74). Zbl0057.09401MR18,55c
- [10] ROBERTSON (A.) and ROBERTSON (W.). — On the closed graph theorem (Proc. Glasgow Math. Ass., t. 3, 1956, p. 9-12). Zbl0073.08702MR18,810d
Citations in EuDML Documents
top- Vlastimil Pták, On the closed graph theorem
- Manuel Valdivia, The space is not -complete
- Dominik Noll, On the theory of - and -spaces in general topology
- D. Van Dulst, Barreledness of subspaces of countable codimension and the closed graph theorem
- Vlastimil Pták, The principle of uniform boundedness and the closed graph theorem
- Tibor Neubrunn, Generalized continuity and separate continuity
- B. Banaschewski, A. Pultr, Booleanization
- D. Bucchioni, André Goldman, Sur certains espaces de formes linéaires liés aux mesures vectorielles
- Manuel Valdivia, On -completeness
- J. Cao, R. Drozdowski, Zbigniew Piotrowski, Weak continuity properties of topologized groups