Generating real maps on a biordered set
Commentationes Mathematicae Universitatis Carolinae (1991)
- Volume: 32, Issue: 2, page 265-272
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMartinón, Antonio. "Generating real maps on a biordered set." Commentationes Mathematicae Universitatis Carolinae 32.2 (1991): 265-272. <http://eudml.org/doc/247279>.
@article{Martinón1991,
abstract = {Several authors have defined operational quantities derived from the norm of an operator between Banach spaces. This situation is generalized in this paper and we present a general framework in which we derivate several maps $X\rightarrow \mathbb \{R\}$ from an initial one $X\rightarrow \mathbb \{R\}$, where $X$ is a set endowed with two orders, $\le $ and $\le ^\{\ast \}$, related by certain conditions. We obtain only three different derivated maps, if the initial map is bounded and monotone.},
author = {Martinón, Antonio},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {derivated map; biordered set; admissible order; infimum of the operator norms; upper semi-Fredholm operators; biordered space},
language = {eng},
number = {2},
pages = {265-272},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Generating real maps on a biordered set},
url = {http://eudml.org/doc/247279},
volume = {32},
year = {1991},
}
TY - JOUR
AU - Martinón, Antonio
TI - Generating real maps on a biordered set
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 2
SP - 265
EP - 272
AB - Several authors have defined operational quantities derived from the norm of an operator between Banach spaces. This situation is generalized in this paper and we present a general framework in which we derivate several maps $X\rightarrow \mathbb {R}$ from an initial one $X\rightarrow \mathbb {R}$, where $X$ is a set endowed with two orders, $\le $ and $\le ^{\ast }$, related by certain conditions. We obtain only three different derivated maps, if the initial map is bounded and monotone.
LA - eng
KW - derivated map; biordered set; admissible order; infimum of the operator norms; upper semi-Fredholm operators; biordered space
UR - http://eudml.org/doc/247279
ER -
References
top- Banas J., Goebel K., Measures of Noncompactness in Banach Spaces, Marcel Dekker, Lecture Notes in Pure and Applied Math., vol.60; New York, Basel, 1980. Zbl0441.47056MR0591679
- Bourbaki N., Éléments de Mathématique. Topologie Générale, Hermann, Paris, 1971. Zbl1107.54001MR0358652
- Fajnshtejn A.S., On measures of noncompactness of linear operators and analogs of the minimal modulus for semi-Fredholm operators (in Russian), Spektr. Teor. Oper. 6 (1985), 182-195 Zbl 634 #47010. (1985)
- Gonzalez M., Martinon A., Operational quantities and operator ideals, Actas XIV Jornadas Hispano-Lusas Mat. (1989), Univ. La Laguna, vol. I, 1990, 383-387. MR1112904
- Gonzalez M., Martinon A., Operational quantities derived from the norm and measures of noncompactness, Proc. Royal Irish Acad., to appear. MR1173159
- Gonzalez M., Martinon A., A generalization of semi-Fredholm operators, 1990, preprint.
- Lebow A., Schechter M., Semigroups of operators and measures of noncompactness, J. Func. Anal. 7 (1971), 1-26. (1971) Zbl0209.45002MR0273422
- Martinon A., Generating operational quantities in Fredholm theory, Actas XIV Jornadas Hispano-Lusas Mat. (1989), Univ. La Laguna, vol. I, 1990, 449-453. MR1112916
- Martinon A., Cantidades operacionales en Teoría de Fredholm (Tesis), Univ. La Laguna, 1989. MR1067932
- Pietsch A., Operator Ideals, North-Holland; Amsterdam, New York, Oxford, 1980. Zbl1012.47001MR0582655
- Schechter M., Quantities related to strictly singular operators, Indiana Univ. Math. J. 21 (1972), 1061-1071. (1972) Zbl0274.47007MR0295103
- Sedaev A.A., The structure of certain linear operators (in Russian), Mat. Issled. 5 (1970), 166-175 MR 43 #2540; Zbl. 247 #47005. (1970) MR0276800
- Tylli H.-O., On the asymptotic behaviour of some quantities related to semi-Fredholm operators, J. London Math. Soc. (2) 31 (1985), 340-348. (1985) Zbl0582.47004MR0809955
- Weis L., Über strikt singulare und strikt cosingulare Operatoren in Banachräumen (Dissertation), Univ. Bonn, 1974.
- Zemanek J., Geometric characteristics of semi-Fredholm operators and their asymptotic behaviour, Studia Math. 80 (1984), 219-234. (1984) Zbl0556.47008MR0783991
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.