Einstein metrics on a class of five-dimensional homogeneous spaces

Eugene D. Rodionov

Commentationes Mathematicae Universitatis Carolinae (1991)

  • Volume: 32, Issue: 2, page 389-393
  • ISSN: 0010-2628

Abstract

top
We prove that there is exactly one homothety class of invariant Einstein metrics in each space S U ( 2 ) × S U ( 2 ) / S O ( 2 ) r ( r Q , | r | 1 ) defined below.

How to cite

top

Rodionov, Eugene D.. "Einstein metrics on a class of five-dimensional homogeneous spaces." Commentationes Mathematicae Universitatis Carolinae 32.2 (1991): 389-393. <http://eudml.org/doc/247281>.

@article{Rodionov1991,
abstract = {We prove that there is exactly one homothety class of invariant Einstein metrics in each space $SU(2) \times SU(2) / SO(2)_r (r\in Q, \, |r|\ne 1)$ defined below.},
author = {Rodionov, Eugene D.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {homogeneous Riemannian manifolds; Einstein manifolds; Ricci tensor; sectional curvature; homogeneous Riemannian manifolds; Einstein manifolds; Ricci tensor; sectional curvature},
language = {eng},
number = {2},
pages = {389-393},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Einstein metrics on a class of five-dimensional homogeneous spaces},
url = {http://eudml.org/doc/247281},
volume = {32},
year = {1991},
}

TY - JOUR
AU - Rodionov, Eugene D.
TI - Einstein metrics on a class of five-dimensional homogeneous spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 2
SP - 389
EP - 393
AB - We prove that there is exactly one homothety class of invariant Einstein metrics in each space $SU(2) \times SU(2) / SO(2)_r (r\in Q, \, |r|\ne 1)$ defined below.
LA - eng
KW - homogeneous Riemannian manifolds; Einstein manifolds; Ricci tensor; sectional curvature; homogeneous Riemannian manifolds; Einstein manifolds; Ricci tensor; sectional curvature
UR - http://eudml.org/doc/247281
ER -

References

top
  1. Besse A., Einstein manifolds, Springer Verlag, Berlin, 1987. Zbl1147.53001MR0867684
  2. Jensen G.R., Homogeneous Einstein spaces of dimension 4 , J. of Diff. Geom. 3 (1969), 309-349. (1969) MR0261487
  3. Kowalski O., Vanhecke L., Classification of five-dimensional naturally reductive spaces, Math. Proc. Camb. Phil. Soc. 97 (1985), 445-463. (1985) Zbl0555.53024MR0778679

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.