The trace theorem revisited
Commentationes Mathematicae Universitatis Carolinae (1991)
- Volume: 32, Issue: 2, page 307-314
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topWeidemaier, Peter. "The trace theorem $W^{2,1}_p(\Omega _T) \ni f \mapsto \nabla _{\!x} f \in W^{1-1/p,1/2-1/2p}_p(\partial \Omega _T)$ revisited." Commentationes Mathematicae Universitatis Carolinae 32.2 (1991): 307-314. <http://eudml.org/doc/247284>.
@article{Weidemaier1991,
abstract = {Filling a possible gap in the literature, we give a complete and readable proof of this trace theorem, which also shows that the imbedding constant is uniformly bounded for $T \downarrow 0$. The proof is based on a version of Hardy’s inequality (cp. Appendix).},
author = {Weidemaier, Peter},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {trace theory; anisotropic Sobolev spaces; anisotropic Sobolev spaces; trace theorem; Hardy's inequality},
language = {eng},
number = {2},
pages = {307-314},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The trace theorem $W^\{2,1\}_p(\Omega _T) \ni f \mapsto \nabla _\{\!x\} f \in W^\{1-1/p,1/2-1/2p\}_p(\partial \Omega _T)$ revisited},
url = {http://eudml.org/doc/247284},
volume = {32},
year = {1991},
}
TY - JOUR
AU - Weidemaier, Peter
TI - The trace theorem $W^{2,1}_p(\Omega _T) \ni f \mapsto \nabla _{\!x} f \in W^{1-1/p,1/2-1/2p}_p(\partial \Omega _T)$ revisited
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 2
SP - 307
EP - 314
AB - Filling a possible gap in the literature, we give a complete and readable proof of this trace theorem, which also shows that the imbedding constant is uniformly bounded for $T \downarrow 0$. The proof is based on a version of Hardy’s inequality (cp. Appendix).
LA - eng
KW - trace theory; anisotropic Sobolev spaces; anisotropic Sobolev spaces; trace theorem; Hardy's inequality
UR - http://eudml.org/doc/247284
ER -
References
top- Adams R.A., Sobolev Spaces, New York - San Francisco - London: Academic Press 1975. Zbl1098.46001MR0450957
- Besov O.V., Il'in V.P., Nikol'skii S.M., Integral Representations of Functions and Imbedding Theorems, Vol. I., Wiley, 1978. Zbl0392.46022
- Il'in V.P., The properties of some classes of differentiable functions of several variables defined in an n-dimensional region, Transl. AMS 81 (1969), 91-256 Trudy Mat. Inst. Steklov 66 (1962), 227-363. (1962) MR0153789
- Il'in V.P., Solonnikov V.A., On some properties of differentiable functions of several variables, Transl. AMS 81 (1969), 67-90 Trudy Mat. Inst. Steklov 66 (1962), 205-226. (1962) MR0152793
- Kufner A., John O., Fučik S., Function Spaces, Leyden, Noordhoff Int. Publ. 1977. MR0482102
- Ladyshenskaya O.A., Solonnikov V.A., Uralceva N.N, Linear and Quasilinear Equations of Parabolic Type, Am. Math. Soc., Providence, R.I. 1968.
- Rákosník J., Some remarks to anisotropic Sobolev spaces, I. Beiträge zur Analysis 13 (1979), 55-68. (1979) MR0536217
- Weidemaier P., Local existence for parabolic problems with fully nonlinear boundary condition; an -approach, to appear in Ann. mat. pura appl.
- Wheeden R. L., Zygmund A., Measure and Integral., New York - Basel: Dekker 1977. Zbl0362.26004MR0492146
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.