Displaying similar documents to “The trace theorem W p 2 , 1 ( Ω T ) f x f W p 1 - 1 / p , 1 / 2 - 1 / 2 p ( Ω T ) revisited”

The fractional dimensional theory in Lüroth expansion

Luming Shen, Kui Fang (2011)

Czechoslovak Mathematical Journal

Similarity:

It is well known that every x ( 0 , 1 ] can be expanded to an infinite Lüroth series in the form of x = 1 d 1 ( x ) + + 1 d 1 ( x ) ( d 1 ( x ) - 1 ) d n - 1 ( x ) ( d n - 1 ( x ) - 1 ) d n ( x ) + , where d n ( x ) 2 for all n 1 . In this paper, sets of points with some restrictions on the digits in Lüroth series expansions are considered. Mainly, the Hausdorff dimensions of the Cantor sets F φ = { x ( 0 , 1 ] : d n ( x ) φ ( n ) , n 1 } are completely determined, where φ is an integer-valued function defined on , and φ ( n ) as n .

Entire solutions in 2 for a class of Allen-Cahn equations

Francesca Alessio, Piero Montecchiari (2005)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider a class of semilinear elliptic equations of the form - ε 2 Δ u ( x , y ) + a ( x ) W ' ( u ( x , y ) ) = 0 , ( x , y ) 2 where ε > 0 , a : is a periodic, positive function and W : is modeled on the classical two well Ginzburg-Landau potential W ( s ) = ( s 2 - 1 ) 2 . We look for solutions to (1) which verify the asymptotic conditions u ( x , y ) ± 1 as x ± uniformly with respect to y . We show via variational methods that if ε is sufficiently small and a is not constant, then (1) admits infinitely many of such solutions, distinct up to translations, which do not...