Convergence of approximating fixed points sets for multivalued nonexpansive mappings
Commentationes Mathematicae Universitatis Carolinae (1991)
- Volume: 32, Issue: 4, page 697-701
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPietramala, Paolamaria. "Convergence of approximating fixed points sets for multivalued nonexpansive mappings." Commentationes Mathematicae Universitatis Carolinae 32.4 (1991): 697-701. <http://eudml.org/doc/247301>.
@article{Pietramala1991,
abstract = {Let $K$ be a closed convex subset of a Hilbert space $H$ and $T:K \multimap K$ a nonexpansive multivalued map with a unique fixed point $z$ such that $\lbrace z\rbrace =T(z)$. It is shown that we can construct a sequence of approximating fixed points sets converging in the sense of Mosco to $z$.},
author = {Pietramala, Paolamaria},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {multivalued nonexpansive map; fixed points set; Mosco convergence; approximating fixed points sets; multivalued nonexpansive mappings; Mosco convergence},
language = {eng},
number = {4},
pages = {697-701},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Convergence of approximating fixed points sets for multivalued nonexpansive mappings},
url = {http://eudml.org/doc/247301},
volume = {32},
year = {1991},
}
TY - JOUR
AU - Pietramala, Paolamaria
TI - Convergence of approximating fixed points sets for multivalued nonexpansive mappings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 4
SP - 697
EP - 701
AB - Let $K$ be a closed convex subset of a Hilbert space $H$ and $T:K \multimap K$ a nonexpansive multivalued map with a unique fixed point $z$ such that $\lbrace z\rbrace =T(z)$. It is shown that we can construct a sequence of approximating fixed points sets converging in the sense of Mosco to $z$.
LA - eng
KW - multivalued nonexpansive map; fixed points set; Mosco convergence; approximating fixed points sets; multivalued nonexpansive mappings; Mosco convergence
UR - http://eudml.org/doc/247301
ER -
References
top- Browder F.E., Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch. Rational. Mech. Anal. 24 (1967), 82-90. (1967) Zbl0148.13601MR0206765
- Reich S., Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), 287-292. (1980) Zbl0437.47047MR0576291
- Singh S.P., Watson B., On approximating fixed points, Proc. Symp. Pure Math. 45 (part 2) (1986), 393-395. (1986) Zbl0597.47035MR0843624
- Reich S., Fixed points of contractive functions, Boll. UMI 5 (1972), 26-42. (1972) Zbl0249.54026MR0309095
- Ćirić L.B., Fixed points for generalized multivalued contractions, Mat. Vesnik, N. Ser. 9 {(24)} (1972), 265-272. (1972) MR0341460
- Iséki K., Multivalued contraction mappings in complete metric spaces, Math. Sem. Notes 2 (1974), 45-49. (1974) MR0413070
- Corley H.W., Some hybrid fixed point theorems related to optimization, J. Math. Anal. Appl. 120 (1986), 528-532. (1986) Zbl0631.47041MR0864769
- LamiDozo E., Multivalued nonexpansive mappings and Opial's condition, Proc. Amer. Math. Soc. 38 (1973), 286-292. (1973) MR0310718
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.