The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Convergence of approximating fixed points sets for multivalued nonexpansive mappings”

Fixed point theorems for nonexpansive operators with dissipative perturbations in cones

Shih-sen Chang, Yu-Qing Chen, Yeol Je Cho, Byung-Soo Lee (1998)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let P be a cone in a Hilbert space H , A : P 2 P be an accretive mapping (equivalently, - A be a dissipative mapping) and T : P P be a nonexpansive mapping. In this paper, some fixed point theorems for mappings of the type - A + T are established. As an application, we utilize the results presented in this paper to study the existence problem of solutions for some kind of nonlinear integral equations in L 2 ( Ω ) .

On a problem of Gulevich on nonexpansive maps in uniformly convex Banach spaces

Sehie Park (1996)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X be a uniformly convex Banach space, D X , f : D X a nonexpansive map, and K a closed bounded subset such that co ¯ K D . If (1) f | K is weakly inward and K is star-shaped or (2) f | K satisfies the Leray-Schauder boundary condition, then f has a fixed point in co ¯ K . This is closely related to a problem of Gulevich [Gu]. Some of our main results are generalizations of theorems due to Kirk and Ray [KR] and others.

Another fixed point theorem for nonexpansive potential operators

Biagio Ricceri (2012)

Studia Mathematica

Similarity:

We prove the following result: Let X be a real Hilbert space and let J: X → ℝ be a C¹ functional with a nonexpansive derivative. Then, for each r > 0, the following alternative holds: either J’ has a fixed point with norm less than r, or s u p | | x | | = r J ( x ) = s u p | | u | | L ² ( [ 0 , 1 ] , X ) = r 0 1 J ( u ( t ) ) d t .