Displaying similar documents to “Convergence of approximating fixed points sets for multivalued nonexpansive mappings”

Fixed point theorems for nonexpansive operators with dissipative perturbations in cones

Shih-sen Chang, Yu-Qing Chen, Yeol Je Cho, Byung-Soo Lee (1998)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let P be a cone in a Hilbert space H , A : P 2 P be an accretive mapping (equivalently, - A be a dissipative mapping) and T : P P be a nonexpansive mapping. In this paper, some fixed point theorems for mappings of the type - A + T are established. As an application, we utilize the results presented in this paper to study the existence problem of solutions for some kind of nonlinear integral equations in L 2 ( Ω ) .

On a problem of Gulevich on nonexpansive maps in uniformly convex Banach spaces

Sehie Park (1996)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X be a uniformly convex Banach space, D X , f : D X a nonexpansive map, and K a closed bounded subset such that co ¯ K D . If (1) f | K is weakly inward and K is star-shaped or (2) f | K satisfies the Leray-Schauder boundary condition, then f has a fixed point in co ¯ K . This is closely related to a problem of Gulevich [Gu]. Some of our main results are generalizations of theorems due to Kirk and Ray [KR] and others.

Another fixed point theorem for nonexpansive potential operators

Biagio Ricceri (2012)

Studia Mathematica

Similarity:

We prove the following result: Let X be a real Hilbert space and let J: X → ℝ be a C¹ functional with a nonexpansive derivative. Then, for each r > 0, the following alternative holds: either J’ has a fixed point with norm less than r, or s u p | | x | | = r J ( x ) = s u p | | u | | L ² ( [ 0 , 1 ] , X ) = r 0 1 J ( u ( t ) ) d t .