Inductive limit topologies on Orlicz spaces
Commentationes Mathematicae Universitatis Carolinae (1991)
- Volume: 32, Issue: 4, page 667-675
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topNowak, Marian. "Inductive limit topologies on Orlicz spaces." Commentationes Mathematicae Universitatis Carolinae 32.4 (1991): 667-675. <http://eudml.org/doc/247303>.
@article{Nowak1991,
abstract = {Let $L^\varphi $ be an Orlicz space defined by a convex Orlicz function $\varphi $ and let $E^\varphi $ be the space of finite elements in $L^\varphi $ (= the ideal of all elements of order continuous norm). We show that the usual norm topology $\mathcal \{T\}_\varphi $ on $L^\varphi $ restricted to $E^\varphi $ can be obtained as an inductive limit topology with respect to some family of other Orlicz spaces. As an application we obtain a characterization of continuity of linear operators defined on $E^\varphi $.},
author = {Nowak, Marian},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Orlicz spaces; inductive limit topologies; convex functions; inclusions and equalities among Orlicz spaces; Young functions},
language = {eng},
number = {4},
pages = {667-675},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Inductive limit topologies on Orlicz spaces},
url = {http://eudml.org/doc/247303},
volume = {32},
year = {1991},
}
TY - JOUR
AU - Nowak, Marian
TI - Inductive limit topologies on Orlicz spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 4
SP - 667
EP - 675
AB - Let $L^\varphi $ be an Orlicz space defined by a convex Orlicz function $\varphi $ and let $E^\varphi $ be the space of finite elements in $L^\varphi $ (= the ideal of all elements of order continuous norm). We show that the usual norm topology $\mathcal {T}_\varphi $ on $L^\varphi $ restricted to $E^\varphi $ can be obtained as an inductive limit topology with respect to some family of other Orlicz spaces. As an application we obtain a characterization of continuity of linear operators defined on $E^\varphi $.
LA - eng
KW - Orlicz spaces; inductive limit topologies; convex functions; inclusions and equalities among Orlicz spaces; Young functions
UR - http://eudml.org/doc/247303
ER -
References
top- Davis H.W., Murray F.J., Weber J.K., Families of -spaces with inductive and projective topologies, Pacific J. Math. 34 (1970), 619-638. (1970) MR0267389
- Davis H.W., Murray F.J., Weber J.K., Inductive and projective limits of -spaces, Portugal. Math. 38 (1972), 21-29. (1972) Zbl0238.46033MR0303276
- Krasnoselskii M.A., Rutickii Ya.B., Convex Functions and Orlicz Spaces, Groningen, 1961.
- Leśniewicz R., On two equalities for Orlicz spaces, Bull. Acad. Pol. Sci. 27 (1979), 557-560. (1979) MR0581551
- Luxemburg W.A., Banach Functions Spaces, Delft, 1955. MR0072440
- Musielak J., Orlicz W., Some remarks on modular spaces, Bull. Acad. Pol. Sci. 7 (1959), 661-668. (1959) Zbl0099.09202MR0112017
- Nowak M., Some equalities among Orlicz spaces II, Bull. Acad. Pol. Sci. 34 (1986), 675-687. (1986) Zbl0639.46033MR0890613
- Nowak M., Unions and intersections of families of -spaces, Math. Nachr. 136 (1988), 241-251. (1988) MR0952476
- Nowak M., Some equalities among Orlicz spaces I, Comment. Math. 29 (1990), 255-275. (1990) Zbl0742.46014MR1059131
- Robertson A.P., Robertson W.J., Topological Vector Spaces, Cambridge, 1973. Zbl0423.46001MR0350361
- Turpin Ph., Convexités dans les espaces vectoriels topologiques généraux, Dissertationes Math. 131 (1976). (1976) Zbl0331.46001MR0423044
- Welland R., Inclusions relations among Orlicz spaces, Proc. Amer. Math. Soc. 17 (1966), 135-138. (1966) MR0188773
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.