Existence of solutions of perturbed O.D.E.'s in Banach spaces
Commentationes Mathematicae Universitatis Carolinae (1991)
- Volume: 32, Issue: 3, page 463-470
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topEmmanuele, Giovanni. "Existence of solutions of perturbed O.D.E.'s in Banach spaces." Commentationes Mathematicae Universitatis Carolinae 32.3 (1991): 463-470. <http://eudml.org/doc/247316>.
@article{Emmanuele1991,
abstract = {We consider a perturbed Cauchy problem like the following \[ \{\hbox\{\rm (PCP)\}\} \left\lbrace \begin\{array\}\{ll\}x^\{\prime \} = A(t,x) +B(t,x) \ x(0)=x\_0 \end\{array\}\right.\]
and we present two results showing that (PCP) has a solution. In some cases, our theorems are more general than the previous ones obtained by other authors (see [4], [8], [9], [11], [13], [17], [18]).},
author = {Emmanuele, Giovanni},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {perturbed Cauchy problem; semi-inner product; measure of noncompactness; ordinary differential equations; Banach space; local existence; Cauchy problem; measures of non-compactness},
language = {eng},
number = {3},
pages = {463-470},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Existence of solutions of perturbed O.D.E.'s in Banach spaces},
url = {http://eudml.org/doc/247316},
volume = {32},
year = {1991},
}
TY - JOUR
AU - Emmanuele, Giovanni
TI - Existence of solutions of perturbed O.D.E.'s in Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 3
SP - 463
EP - 470
AB - We consider a perturbed Cauchy problem like the following \[ {\hbox{\rm (PCP)}} \left\lbrace \begin{array}{ll}x^{\prime } = A(t,x) +B(t,x) \ x(0)=x_0 \end{array}\right.\]
and we present two results showing that (PCP) has a solution. In some cases, our theorems are more general than the previous ones obtained by other authors (see [4], [8], [9], [11], [13], [17], [18]).
LA - eng
KW - perturbed Cauchy problem; semi-inner product; measure of noncompactness; ordinary differential equations; Banach space; local existence; Cauchy problem; measures of non-compactness
UR - http://eudml.org/doc/247316
ER -
References
top- Ambrosetti, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Univ. Padova 39 (1967), 349-360. (1967) MR0222426
- Crandall M., Pazy A., Nonlinear equations in Banach spaces, Israel J. Math. 11 (1972), 87-94. (1972) MR0300166
- Deimling K., Ordinary Differential Equations in Banach Spaces, Lecture Notes in Math. 596, Springer Verlag 1977. Zbl0418.34060MR0463601
- Deimling K., Open Problems for Ordinary Differential Equations in B-Spaces, Proceeding Equa-Diff. 1978, 127-137. MR0690603
- Diestel J., Uhl J.J., jr., Vector Measures, Amer. Math. Soc. 1977. Zbl0521.46035MR0453964
- Dinculeanu N., Vector Measures, Pergamon Press 1967. Zbl0647.60062MR0206190
- Dunford N., Schwartz J.T., Linear Operators, part I, Interscience 1957. Zbl0635.47003
- Emmanuele G., On a theorem of R.H. Martin on certain Cauchy problems for ordinary differential equations, Proc. Japan Acad. 61 (1985), 207-210. (1985) Zbl0578.34003MR0816713
- Emmanuele G., Existence of approximate solutions for O.D.E.'s under Carathéodory assumptions in closed, convex sets of Banach spaces, Funkcialaj Ekvacioj, to appear.
- Evans L.C., Nonlinear evolution equations in an arbitrary Banach space, Israel J. Math. 26 (1977), 1-42. (1977) Zbl0349.34043MR0440431
- Hu Shou Chuan, Ordinary differential equations involving perturbations in Banach spaces, J. Nonlinear Analysis, TMA 7 (1983), 933-940. (1983) MR0713206
- Kato T., Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520. (1967) Zbl0163.38303MR0226230
- Martin R.H., Remarks on ordinary differential equations involving dissipative and compact operators, J. London Math. Soc. 10 (1975), 61-65. (1975) Zbl0305.34092MR0369849
- Martin R.H., Nonlinear operators and differential equations in Banach spaces, Wiley and Sons 1976. Zbl0333.47023MR0492671
- Pierre M., Enveloppe d'une famille de semi-groups dans un espace de Banach, C.R. Acad. Sci. Paris 284 (1977), 401-404. (1977) MR0440432
- Ricceri B., Villani A., Separability and Scorza-Dragoni's property, Le Matematiche 37 (1982), 156-161. (1982) MR0791334
- Schechter E., Evolution generated by continuous dissipative plus compact operators, Bull. London Math. Soc. 13 (1981), 303-308. (1981) Zbl0443.34061MR0620042
- Volkmann P., Ein Existenzsatz für gewöhnliche differentialgleichungen in Banachräumen, Proc. Amer. Math. Soc. 80 (1980), 297-300. (1980) Zbl0506.34051MR0577763
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.