Zero-dimensional Dugundji spaces admit profinite lattice structures

Lutz Heindorf

Commentationes Mathematicae Universitatis Carolinae (1992)

  • Volume: 33, Issue: 2, page 329-334
  • ISSN: 0010-2628

Abstract

top
We prove what the title says. It then follows that zero-dimensional Dugundji space are supercompact. Moreover, their Boolean algebras of clopen subsets turn out to be semigroup algebras.

How to cite

top

Heindorf, Lutz. "Zero-dimensional Dugundji spaces admit profinite lattice structures." Commentationes Mathematicae Universitatis Carolinae 33.2 (1992): 329-334. <http://eudml.org/doc/247353>.

@article{Heindorf1992,
abstract = {We prove what the title says. It then follows that zero-dimensional Dugundji space are supercompact. Moreover, their Boolean algebras of clopen subsets turn out to be semigroup algebras.},
author = {Heindorf, Lutz},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Dugundji space; projective Boolean algebra; profinite lattice; supercompact; Dugundji space; projective Boolean algebra; profinite lattice; supercompact spaces},
language = {eng},
number = {2},
pages = {329-334},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Zero-dimensional Dugundji spaces admit profinite lattice structures},
url = {http://eudml.org/doc/247353},
volume = {33},
year = {1992},
}

TY - JOUR
AU - Heindorf, Lutz
TI - Zero-dimensional Dugundji spaces admit profinite lattice structures
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1992
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 33
IS - 2
SP - 329
EP - 334
AB - We prove what the title says. It then follows that zero-dimensional Dugundji space are supercompact. Moreover, their Boolean algebras of clopen subsets turn out to be semigroup algebras.
LA - eng
KW - Dugundji space; projective Boolean algebra; profinite lattice; supercompact; Dugundji space; projective Boolean algebra; profinite lattice; supercompact spaces
UR - http://eudml.org/doc/247353
ER -

References

top
  1. Bell M.G., Not all dyadic spaces are supercompact, Comment. Math. Univ. Carolinae 31 (1990), 775-779. (1990) Zbl0716.54017MR1091375
  2. Bell M.G., Ginsburg J., Compact spaces and spaces of maximal complete subgraphs, Trans. Amer. Math. Soc. 283 (1984), 329-338. (1984) Zbl0554.54009MR0735426
  3. Clifford A.H., Preston B., The algebraic theory of semigroups, vol. 1, Providence, 1964. Zbl0238.20076
  4. Haydon R., On a problem of Pelczynski: Miljutin spaces, Dugundji spaces and A E ( 0 - dim ) , Studia Math. 52 (1974), 23-31. (1974) MR0418025
  5. Heindorf L., Boolean semigroup rings and exponentials of compact, zero-dimensional spaces, Fund. Math. 135 (1990), 37-47. (1990) Zbl0716.54006MR1074647
  6. Koppelberg S., Projective Boolean Algebras, Chapter 20 of: J.D. Monk (ed.), Handbook of Boolean algebras, Amsterdam, 1989, vol. 3, 741-773. Zbl0258.06010MR0991609
  7. Numakura K., Theorems on compact totally disconnected semigroups and lattices, Proc. Amer. Math. Soc. 8 (1957), 623-626. (1957) Zbl0081.25602MR0087032
  8. Sčepin E.V., Functors and uncountable powers of compacts (in Russian), Uspehi Mat. Nauk 36 (1981), 3-62. (1981) MR0622720

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.