Not all dyadic spaces are supercompact
Commentationes Mathematicae Universitatis Carolinae (1990)
- Volume: 031, Issue: 4, page 775-779
- ISSN: 0010-2628
Access Full Article
topHow to cite
topReferences
top- Alexandroff P. S., Zur Theorie der topologischen Räume, (Doklady) Acad. Sci. URSS 11 (1936), 55-58. (1936) Zbl0014.13502
- Bell M. G., Not all compact spaces are supercompact, General Topology Appl. 8 (1978), 151-155. (1978) MR0474199
- Bell M. G., Polyadic spaces of arbitrary compactness numbers, Comment. Math. Univ. Carolinae 26 (1985), 353-361. (1985) Zbl0587.54039MR0803933
- Douwen E. van, Mill J. van, Supercompact Spaces, Topology and its Applications 13 (1982), 21-32. (1982) MR0637424
- Engelking R., Cartesian products and dyadic spaces, Fund. Math. 57 (1965), 287-304. (1965) Zbl0173.50603MR0196692
- Groot J. de, Supercompactness and superextensions, in Contributions to extension theory of topological structures, Symp. Berlin 1967, Deutscher Verlag Wiss., Berlin 1969, 89-90. (1967) MR0244955
- Mill J. van, Mills C. F., A nonsupercompact continuous image of a supercompact space, Houston J. Math. 5 (1979), 241-247. (1979) MR0546758
- Mills C. F., Compact topological groups are supercompact, Wiskundig Seminarium rapport nr. 81, Vrije Univ., Amsterdam 1978. (1978)
- Pelczynski A., Linear extensions, linear averagings, and their application to linear topological classification of spaces of continuous functions, Dissertationes Math. 58, Warszawa 1968. (1968) MR0227751
- Rudin M. E., Lectures on set theoretic topology, Regional Conf. Ser. in Math. No. 23, Amer. Math. Soc., Providence, RI, 1977. (1977) MR0367886
- Strok M., Szymanski A., Compact metric spaces have binary bases, Fund. Math. 89 (1975), 81-91. (1975) Zbl0316.54030MR0383351