The product of distributions on R m

Cheng Lin-Zhi; Brian Fisher

Commentationes Mathematicae Universitatis Carolinae (1992)

  • Volume: 33, Issue: 4, page 605-614
  • ISSN: 0010-2628

Abstract

top
The fixed infinitely differentiable function ρ ( x ) is such that { n ρ ( n x ) } is a regular sequence converging to the Dirac delta function δ . The function δ 𝐧 ( 𝐱 ) , with 𝐱 = ( x 1 , , x m ) is defined by δ 𝐧 ( 𝐱 ) = n 1 ρ ( n 1 x 1 ) n m ρ ( n m x m ) . The product f g of two distributions f and g in 𝒟 m ' is the distribution h defined by error n 1 error n m f 𝐧 g 𝐧 , φ = h , φ , provided this neutrix limit exists for all φ ( 𝐱 ) = φ 1 ( x 1 ) φ m ( x m ) , where f 𝐧 = f * δ 𝐧 and g 𝐧 = g * δ 𝐧 .

How to cite

top

Lin-Zhi, Cheng, and Fisher, Brian. "The product of distributions on $R^m$." Commentationes Mathematicae Universitatis Carolinae 33.4 (1992): 605-614. <http://eudml.org/doc/247358>.

@article{Lin1992,
abstract = {The fixed infinitely differentiable function $\rho (x)$ is such that $\lbrace n\rho (n x)\rbrace $ is a regular sequence converging to the Dirac delta function $\delta $. The function $\delta _\{\mathbf \{n\}\}(\mathbf \{x\})$, with $\mathbf \{x\}=(x_1, \dots , x_m)$ is defined by \[ \delta \_\{\mathbf \{n\}\}(\mathbf \{x\})=n\_1 \rho (n\_1 x\_1)\dots n\_m \rho (n\_m x\_m). \] The product $f \circ g$ of two distributions $f$ and $g$ in $\mathcal \{D\}^\{\prime \}_m$ is the distribution $h$ defined by \[ \operatornamewithlimits\{N\mbox\{--\}\lim \}\limits \_\{n\_1\rightarrow \infty \} \dots \operatornamewithlimits\{N\mbox\{--\}\lim \}\limits \_\{n\_m\rightarrow \infty \} \langle f\_\{\mathbf \{n\}\} g\_\{\mathbf \{n\}\}, \phi \rangle = \langle h, \phi \rangle , \] provided this neutrix limit exists for all $\phi (\mathbf \{x\})=\phi _1(x_1)\dots \phi _m(x_m)$, where $f_\{\mathbf \{n\}\}=f \ast \delta _\{\mathbf \{n\}\}$ and $g_\{\mathbf \{n\}\}=g\ast \delta _\{\mathbf \{n\}\}$.},
author = {Lin-Zhi, Cheng, Fisher, Brian},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {distribution; neutrix limit; neutrix product; product of distributions; Dirac delta function},
language = {eng},
number = {4},
pages = {605-614},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The product of distributions on $R^m$},
url = {http://eudml.org/doc/247358},
volume = {33},
year = {1992},
}

TY - JOUR
AU - Lin-Zhi, Cheng
AU - Fisher, Brian
TI - The product of distributions on $R^m$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1992
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 33
IS - 4
SP - 605
EP - 614
AB - The fixed infinitely differentiable function $\rho (x)$ is such that $\lbrace n\rho (n x)\rbrace $ is a regular sequence converging to the Dirac delta function $\delta $. The function $\delta _{\mathbf {n}}(\mathbf {x})$, with $\mathbf {x}=(x_1, \dots , x_m)$ is defined by \[ \delta _{\mathbf {n}}(\mathbf {x})=n_1 \rho (n_1 x_1)\dots n_m \rho (n_m x_m). \] The product $f \circ g$ of two distributions $f$ and $g$ in $\mathcal {D}^{\prime }_m$ is the distribution $h$ defined by \[ \operatornamewithlimits{N\mbox{--}\lim }\limits _{n_1\rightarrow \infty } \dots \operatornamewithlimits{N\mbox{--}\lim }\limits _{n_m\rightarrow \infty } \langle f_{\mathbf {n}} g_{\mathbf {n}}, \phi \rangle = \langle h, \phi \rangle , \] provided this neutrix limit exists for all $\phi (\mathbf {x})=\phi _1(x_1)\dots \phi _m(x_m)$, where $f_{\mathbf {n}}=f \ast \delta _{\mathbf {n}}$ and $g_{\mathbf {n}}=g\ast \delta _{\mathbf {n}}$.
LA - eng
KW - distribution; neutrix limit; neutrix product; product of distributions; Dirac delta function
UR - http://eudml.org/doc/247358
ER -

References

top
  1. Cheng L.Z., Fisher B., Several products of distributions on R m , Proc. R. Soc. Lond. A 426 (1989), 425-439. (1989) MR1030468
  2. van der Corput J.G., Introduction to the neutrix calculus, J. Analyse Math. 7 (1959-60), 291-398. (1959-60) Zbl0097.10503MR0124678
  3. Fisher B., The product of distributions, Quart. J. Math. (2) 22 (1971), 291-298. (1971) Zbl0213.13104MR0287308
  4. Fisher B., The product of the distributions x + - r - 1 / 2 and x - - r - 1 / 2 , Proc. Camb. Phil. Soc. 71 (1972), 123-130. (1972) Zbl0239.46031MR0296690
  5. Fisher B., The neutrix distribution product x + - r δ ( r - 1 ) ( x ) , Studia Sci. Math. Hungar. 9 (1974), 439-441. (1974) MR0412805
  6. Fisher B., Li C.K., On the product of distributions in m variables, Jiangsu Coll. Jnl. 11 (1990), 1-10. (1990) MR1069541
  7. Schwartz L., Théorie des distributions, Vol. I, II, Herman, 1957. Zbl0962.46025MR0107812

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.