Equivalence of certain free topological groups

Jan Baars

Commentationes Mathematicae Universitatis Carolinae (1992)

  • Volume: 33, Issue: 1, page 125-130
  • ISSN: 0010-2628

Abstract

top
In this paper we give a complete isomorphical classification of free topological groups F M ( X ) of locally compact zero-dimensional separable metric spaces X . From this classification we obtain for locally compact zero-dimensional separable metric spaces X and Y that the free topological groups F M ( X ) and F M ( Y ) are isomorphic if and only if C p ( X ) and C p ( Y ) are linearly homeomorphic.

How to cite

top

Baars, Jan. "Equivalence of certain free topological groups." Commentationes Mathematicae Universitatis Carolinae 33.1 (1992): 125-130. <http://eudml.org/doc/247396>.

@article{Baars1992,
abstract = {In this paper we give a complete isomorphical classification of free topological groups $FM(X)$ of locally compact zero-dimensional separable metric spaces $X$. From this classification we obtain for locally compact zero-dimensional separable metric spaces $X$ and $Y$ that the free topological groups $FM (X)$ and $FM(Y)$ are isomorphic if and only if $C_p(X)$ and $C_p(Y)$ are linearly homeomorphic.},
author = {Baars, Jan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {free topological groups; function spaces},
language = {eng},
number = {1},
pages = {125-130},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Equivalence of certain free topological groups},
url = {http://eudml.org/doc/247396},
volume = {33},
year = {1992},
}

TY - JOUR
AU - Baars, Jan
TI - Equivalence of certain free topological groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1992
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 33
IS - 1
SP - 125
EP - 130
AB - In this paper we give a complete isomorphical classification of free topological groups $FM(X)$ of locally compact zero-dimensional separable metric spaces $X$. From this classification we obtain for locally compact zero-dimensional separable metric spaces $X$ and $Y$ that the free topological groups $FM (X)$ and $FM(Y)$ are isomorphic if and only if $C_p(X)$ and $C_p(Y)$ are linearly homeomorphic.
LA - eng
KW - free topological groups; function spaces
UR - http://eudml.org/doc/247396
ER -

References

top
  1. Arhangel'skiĭ A.V., A survey of C p -theory, Questions and Answers in General Topology 5 (1987) 1-109. MR0909494
  2. Baars J., de Groot J., An isomorphical classification of function spaces of zero-dimensional locally compact separable metric spaces, Comment. Math. Univ. Carolinae 29 (1988), 577-595. (1988) Zbl0684.54011MR0972840
  3. Engelking R., On closed images of the space of irrationals, Proc. Amer. Math. Soc. 21 (1969), 583-586. (1969) Zbl0177.25501MR0239571
  4. Graev M.I., Free topological groups, Am. Math. Soc. Transl. (1) 8 (1962), 305-364 (translation from {Svobodnye topologičeskie gruppy}, Izvestiya Akad. Nauk SSSR, Ser. Mat. 12 (1948) 279-324). (1962) MR0025474
  5. Graev M.I., Teorija topologičeskih grupp I, Uspehi Math. Nauk 5 (1950), 3-56. (1950) MR0036245
  6. Markov A.A., On free topological groups, Am. Math. Soc. Transl. (1) 8 (1962), 195-272 (translation from {O svobodnyh topologičeskih gruppah}, Izvestiya Akad. Nauk SSSR, Ser. Mat. 9 (1945) 3-64). (1962) MR0012301
  7. Okunev O.G., A method for constructing examples of M -equivalent spaces, Top. and its Appl. 36 (1990), 157-171. (1990) Zbl0707.54007MR1068167
  8. Pavlovskiĭ D., On spaces of continuous functions, Soviet Math. Dokl. 22 (1980), 34-37. (1980) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.