Semirings whose additive endomorphisms are multiplicative
Commentationes Mathematicae Universitatis Carolinae (1993)
- Volume: 34, Issue: 2, page 213-219
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKepka, Tomáš. "Semirings whose additive endomorphisms are multiplicative." Commentationes Mathematicae Universitatis Carolinae 34.2 (1993): 213-219. <http://eudml.org/doc/247457>.
@article{Kepka1993,
abstract = {A ring or an idempotent semiring is associative provided that additive endomorphisms are multiplicative.},
author = {Kepka, Tomáš},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {semiring; additive endomorphism; endomorphisms of semirings; semiring; additive idempotent AE-semiring},
language = {eng},
number = {2},
pages = {213-219},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Semirings whose additive endomorphisms are multiplicative},
url = {http://eudml.org/doc/247457},
volume = {34},
year = {1993},
}
TY - JOUR
AU - Kepka, Tomáš
TI - Semirings whose additive endomorphisms are multiplicative
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1993
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 34
IS - 2
SP - 213
EP - 219
AB - A ring or an idempotent semiring is associative provided that additive endomorphisms are multiplicative.
LA - eng
KW - semiring; additive endomorphism; endomorphisms of semirings; semiring; additive idempotent AE-semiring
UR - http://eudml.org/doc/247457
ER -
References
top- Birkenmeier G., Heatherly H., Rings whose additive endomorphisms are ring endomorphisms, Bull. Austral. Math. Soc. 42 (1990), 145-152. (1990) Zbl0703.16006MR1066370
- Dhompongsa S., Sanwong J., Rings in which additive mappings are multiplicative, Studia Sci. Math. Hungar. 22 (1987), 357-359. (1987) Zbl0647.16028MR0932222
- Dugas M., Hausen J., Johnson J.A., Rings whose additive mappings are multiplicative, Periodica Math. Hungar. 23 (1991), 65-73. (1991)
- Feigelstock S., Rings whose additive endomorphisms are multiplicative, Periodica Math. Hungar. 19 (1988), 257-260. (1988) Zbl0671.16016MR0984775
- Feigelstock S., Additive group of rings, Vol. II, Pitman Research Notes in Math., Series 169, Longman Scient. & Techn., New York, 1988. MR0940015
- Hirano Y., On rings whose additive endomorphisms are multiplicative, Periodica Math. Hungar. 23 (1991), 87-89. (1991) Zbl0754.16002MR1141355
- Ježek J., Kepka T., Němec P., Distributive groupoids, Rozpravy ČSAV 91/3 (1981). (1981) MR0672563
- Kepka T., On a class of non-associative rings, Comment. Math. Univ. Carolinae 18 (1977), 265-279. (1977) Zbl0366.17016MR0460393
- Kim K.H., Roush F.W., Additive endomorphisms of rings, Periodica Math. Hungar. 12 (1981), 241-242. (1981) Zbl0451.16014MR0642635
- Sullivan R.P., Research problem no. 23, Periodica Math. Hungar. 8 (1977), 313-314. (1977) Zbl0376.16034
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.